HIGHER OXIDATION STATE CHEMISTRY OF MANGANESE

W. LEVASON and C.A. McAULIFFE

Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester 1 (Great Britain)

(Received March 30th, 1971)

CONTENTS

A Introduction	353
B. Manganese (VII)	353
C. Manganese (VI)	356
D Manganese (V)	358
E Electronic spectra and structure of the tetraoxoanions	359
F Manganese (IV)	359
G. Manganese (III)	367
H Spectra of manganese (III) compounds	377
References	378

A. INTRODUCTION

In the higher oxidation states, manganese shows some resemblance to technetium and rhenium, and a more formal resemblance to chlorine, especially in the 7+ state. Manganese chemistry is dominated by the very stable manganese (II) cation $(3d^5)$, which is in marked contrast to technetium and rhenium where there is little evidence for any simple cations.

Apart from a review by Sidgwick over twenty years ago¹ and a recent review of the solution chemistry of manganese (III)², no comprehensive collation of the higher oxidation state chemistry of this important metal has appeared

Reference to Table 1 illustrates the multiplicity of oxidation states in which manganese exists, and it is the purpose of this review to describe the chemistry of Mn^{III}, Mn^{IV}, Mn^{VI}, and Mn^{VII}.

B MANGANESE (VII)

Manganese (VII) is found only in compounds containing oxide ligands. All Mn^{VII} compounds are very strongly oxidising, and with the exception of the permanganates, are thermally unstable, decomposing, often explosively, at or below room temperature.

TABLE 1

Redox potentials for manganese³

Reaction			Redox potential (v)
MnO _{2(s)} + 4 H* _(aq) + 2 e	-	Mn2+(aq) + 2 H ₂ O	1 239
$MnO_{a(s)} + 4 OH^{-}(aq)$	\rightarrow	$MnO_4^-(3q) + 2 H_2O + 3 e^-$	-0.588
MnO ₄ 3-(aq)	→	$MnO_{a}^{2}(aq) + e^{-}$	-0 3
Mn2+(aq)	-	$Mn^{3+}(4q) + e^{-}$	-15
$Mn^{2*}(aq) + 4 H_2O$	→	$MnO_4^-(aq) + 8 H^+(aq) + 5 e^-$	-1 51
$MnO_{2(5)} + 2 H_2O$	→	$MnO_{a}(aq) + 4 H^{*}(aq) + 3 e^{-}$	-1 69
$MnO_{2(s)} + 2 H_2O$	→	$MnO_4^{2-}(aq) + 4 H^{+}(aq) + 2 e^{-}$	-2 26
Mn ³⁺ (aq) + 2 H ₂ O	-	$M\pi O_{2(s)} + 4 H^{+}(aq) + e^{-}$	-10
$Mn(OH)_{2(S)} + 2OH^{-}(aq)$	→	$MnO_{2(5)} + 2 H_2O + 2 e^{-}$	0 03
$Mn(OH)_{z(s)} + 6 OH^{-}_{(aq)}$	~*	$MnQ_{4}^{-}(3q) \pm 4 H_{2}O \pm 5 e^{-}$	-0 34
$MnO_{2(s)} + 4 OH^{-}(aq)$	~-	$MnO_4^{3-}(aq) + 2 H_2O + e^-$	-09
$MnO_{2(s)} + 4 OH^{-}(aq)$		$MnO_4^{2-}(aq) + 2 H_2O + 2 e^-$	-0 603
$Mn(OH)_2(s) + OH^*(aq)$		$Mn(OH)_{3(S)} + e^{-}$	0 2
MnO ₄ 3-(aq)		$MnO_{4}^{-}(aq) + e^{-}$	-0 56

(t) Oxide halides

 MnO_3X (X = F, Cl) are obtained from the reaction of KMnO₄ with the appropriate halosulphonic acid^{4,5} or ^{4,6,7} with anhydrous HX. MnO₃F is also formed⁸ from KMnO₄ and IF₅ Manganese trioxide fluoride forms dark green crystals, which melt at -38° to a green liquid, which vaporises to a green gas (extrapolated b.p. $+60^{\circ}$) Green-violet MnO₃Cl is similar but less stable. MnO₃F decomposes above 0° , often explosively, forming MnO₂, MnF₂, and O₂, and hydrolyses instantly in water to HMnO₄ and HF. Microwave spectroscopy⁹ shows the structure to be tetrahedral, with Mn-F = 1.724 Å, Mn-O = 1.586 Å, and O-Mn-F = 108.5°. The IR and electronic spectra of both compounds have been reported^{5,10}.

(ii) Manganese heptoxide

 Mn_2O_7 is an oily liquid, $D_4^{20}=2$ 396, which appears red by transmitted, green by reflected light; the vapour is purple. It freezes at 5.9° and can be distilled at low pressure¹¹. It separates on standing¹¹⁻¹³ from KMnO₄ and cold, concentrated H_2SO_4 . Mn_2O_7 decomposes slowly above 0° into MnO₂ and oxygen, at higher temperatures or in the presence of dust or organic matter, it explodes violently, forming Mn_2O_3 and oxygen¹¹. It dissolves in water to form permanganic acid of which it is the anhydride, and is soluble without reaction in freons and SO_2Cl_2 , and only slowly reacts with CCl_4 ; such solutions have been proposed as useful strong oxidising agents⁵ The structure is probably $O_3MnOMnO_3$ (cf. Cl_2O_7), a proposal supported by the small dipole moment¹¹.

(iii) Permanganic acid and the permanganates

A deep purple solution of HMnO₄ is obtained by adding the calculated quantity of sulphuric acid to saturated banum permanganate solution ¹⁴ The dilute solution is stable but decomposes on concentration. Dubois ¹⁴ obtained a 24 5% solution which froze at -11° to a mass of ice and permanganic acid crystals, but these soon decomposed in diffuse daylight. By fractional vacuum sublimation of these crystals, anhydrous HMnO₄ and the dihydrate HMnO₄ 2H₂O were obtained ¹⁵. HMnO₄ forms deep violet rectangular crystals, very soluble in water, and slightly soluble in CCl₃CF₃ and perfluorodecalin. It explodes on contact with most organic materials, and on warming. The dihydrate is generally similar but reacts less violently

KMnO₄ is extensively used as a strong oxidising agent, no attempt has been made to cover this aspect of its chemistry in this review. Dark purple, orthorhombic crystals of KMnO₄ are normally obtained from K_2MnO_4 by electrochemical oxidation, or by disproportionation with acids (usually CO₂) Barium permanganate results from passing CO₂ through an aqueous suspension of BaMnO₄ (ref. 16), and other permanganates are obtained from this by metathesis with the appropriate sulphate ¹⁷⁻¹⁹. AgMnO₄, which crystallises on mixing saturated solutions of KMnO₄ and AgNO₃, can also be used with the appropriate chloride ²⁰⁻²³ The spanngly soluble permanganates of NH₄⁺, Rb, Cs, can be obtained directly from KMnO₄ and M₂SO₄ (M = NH₄, Rb, Cs)²⁴.

The permanganates of K, Rb, Cs, NH₄, Ba, Ag, crystallise anhydrous, but many of the others form hydrates, e.g. Li (3H₂O), Na (2 1H₂O) (ref. 25), Mg, Cd, Zn, Cu, Ni, (all 6H₂O), Sr (3H₂O), Ca (4H₂O). The hydrated alkali and alkaline earth permanganates can be dehydrated without decomposition, but the others decompose²⁵.

The permanganate ion consists of a manganese atom surrounded by four oxygen atoms at the corners of a regular tetrahedron²⁶ with Mn-O (ave) = 1.629 \pm 0.008 Å, and O-Mn-O = 109.4 \pm 0.7°. The electronic spectrum is discussed in Sect. E and the vibrational frequencies are recorded in Table 2. The IR spectra of a number of individual permanganates have been recorded, and discussed in terms of the site symmetry of the anion²⁵.

The thermal decomposition of KMnO₄ has been the subject of a great deal of work, but the nature of some of the products is still uncertain. The water-soluble decomposition product is K₂MnO₄, but the nature of the water-insoluble part has been disputed. Thermogravimetric and differential thermal analyses have been used to study the decomposition

TABLE 2

Vibrational spectra of the tetraoxoamons

	Frequency (c	cm-1)			
	ν,(Α,)	V ₂ (E)	$\nu_3(F_2)$	$\nu_4(F_2)$	Ref.
MnO ₄ -	838	355	921	429	29
MnO ₄ 2-	810		862	328	30
MπO ₄ ² - MπO ₄ ² - MπO ₄ ³ -	836		770	348	30

of the K and Rb salts^{27,28}. Herbstein et al ²⁸ propose the idealised decomposition equation

$$10 \text{ KMnO}_4 = 2.6 \text{ K}_2 \text{MnO}_4 + (2.3 \text{ K}_2 \text{O}, 7.3 \text{ MnO}_{2.05}) + 6.0_2$$

at 250° in air. The phase in parentheses is of unknown structure but may be related to the Mn^{IV}—Mn^{III} complex oxides prepared by Scholder and Protzer⁵¹.

The structural parameters of some inclividual permanganates are given in Table 3

TABLE 3

Crystal structures of some permanganates

Compound	Туре	Dimensions (Å)			Ref
		а	ь	с	
KMnO _a	Orthorhombic	9 105	5 720	7 4 2 5	26
RbMnO ₄	Orthorhombic	7 65	9 55	5 74	31
CsMnO ₄	Orthorhombic	7 96	10 06	5 80	31
NH ₄ MnO ₄	Orthorhombic	7 58	9 33	5 78	32
LiMnO ₄ 3H ₂ O	Hexagonal	7 73		5 39	17,33
Ba(MnO ₄) ₄	Orthorhombic	14 71	11 86	7 39	34
Sr(MnO ₄), 3H,O	Cubic	9 6 1			22
AgMnO.	Monoclinic	5 66	8 27	7 13	35
$Mg(MnO_4)_2 6H_2O$	Orthorhombic	7 81	13 56	5 28	31
Zn(MnO ₄), 6H ₂ O	Orthorhombic	7 81	13 56	5 23	31
N1(MnO ₄) ₂ 6H ₂ O	Orthorhombic	7 75	13 45	5 20	31
Cd(MnO ₄) ₂ 6H ₂ O	Orthorhombic	8 04	13 91	5 34	19

(iv) MnO3* or O3MnOSO3H

The green solution formed on dissolving KMnO₄ in concentrated H_2SO_4 contains MnO_3^+ or O_3MnOSO_3H , or possibly both, depending upon concentration, and not $(MnO_3)_2SO_4$ as was assumed in the older literature^{36,37} Cryoscopic, conductimetric, and electronic spectral studies were said to be consistent with the presence of a planar MnO_3^+ cation, formed by the reaction³⁶

$$KMnO_4 + 3 H_2SO_4 = K^+ + H_3O^+ + MnO_3^+ + 3 HSO_4^-$$

In 100% sulphuric acid O₃MnOSO₃H is said to be present³⁷

C MANGANESE (VI)

Mn^{VI} is confined to salts of the manganate (VI) ion, and MnO₂Cl₂ Mn^{VI} is stable only in basic solution, its most characteristic reaction being to disproportionate in acidic or neutral solution.

(1) Manganese dioxide dichloride

MnO₂Cl₂ is the only oxide halide of MnVI known, although presumably MnO₂F₂

could be prepared. Briggs⁵ obtained MnO_2Cl_2 as a very unstable brown liquid, by reduction of $KMnO_4$ in HSO_3Cl with SO_2 at low temperatures. It begins to decompose at -30° , and hydrolyses to MnO_4 , MnO_2 , and Cl

(11) "Manganese trioxide"

The early claims^{38,39} to have prepared MnO_3 have not been substantiated by later work. Lankshear⁴⁰ showed that the red solid claimed as MnO_3 is really a mixture of $HMnO_4$ and some MnO_2 , and it has since been demonstrated that Mn_2O_7 loses oxygen to form MnO_2 directly, with no evidence for any intermediate oxide¹² Despite this, reports of a compound MnO_3 still appear in textbooks from time to time!

(111) Manganates (VI)

The parent acid is unknown, acidification of manganate (VI) solutions resulting in disproportionation. Manganates (VI) are obtained by fusing MnO₂ with alkali metal hydroxides under oxidising conditions or by electrolytic oxidation of alkaline manganese (II) solutions⁴¹. Pure K₂MnO₄ was obtained by boiling KMnO₄ with concentrated KOH solution, and various hydrates of sodium manganate (VI) can be prepared similarly⁴². Alkali metal manganates (VI) are also formed by thermal decomposition of the corresponding permanganate⁴³, or by heating MnO₂ with the metal superoxide⁴⁴. Barium manganate precipitates¹⁶ on boiling KMnO₄ with a saturated aqueous solution of Ba(NO₂)₂ and Ba(OH)₂. Lithium manganate does not appear to have been reported, MnO₂ does not dissolve readily in fused LiOH, and LiMnO₄ decomposes to Li₂O and MnO₂ on heating⁴³. A number of others manganates (VI) were reported in the older literature (see ref. 45), but these must be regarded as doubtful until reinvestigated.

Alkali metal manganates (VI) form deep green crystals, which often appear darker due to a superficial layer of permanganate. They dissolve in aqueous alkali to form green solutions, but in acidic, neutral, or even weakly basic solutions, they disproportionate

$$3 M_2 MnO_4 + 2 H_2 O = 2 MMnO_4 + MnO_2 + 4 MOH$$
 (M = alkalı metal)

Thermal decomposition produces manganates (V) and other products, e.g., at 620° in $nitrogen^{28}$

$$10 \text{ K}_2\text{MnO} = 5.7 \text{ K}_3\text{MnO}_4 + 0.5(2.9 \text{ K}_2\text{ O}, 8.6 \text{ MnO}_{2.1}) + 3.40 \text{ O}_2$$

The electronic spectrum is discussed later (Section E) and the IR frequencies are shown in Table 2 $K_2MnO_4(d^1)$ has a magnetic moment of I 73 B M, and follows the Curie—Weiss law with $\theta \simeq 0^\circ$ (ref. 46). The structure of K_2MnO_4 shows the MnO_4^{2-} ion to be tetrahedral with Mn-O=1 659 Å, and O-Mn-O=109 5 \pm 0.7°, which means that the Mn-O bond length is 0.03 Å longer than in the permanganate 47, in agreement with the predictions of molecular orbital theory. The structural parameters of the alkali manganates are reported in Table 4.

TABLE 4			
Manganate	(VI) crystal	structures	

Compound	Type	Dimensions	Ref		
		<u>a</u>	b	с	
K, MnO,	Orthorhombic	7 667	5 895	10 359	47
Rb ₂ MnO ₄	Orthorhombic	7 997	10 670	6 044	44
Cs ₂ MnO ₄	Orthorhombic	8 360	11 052	6 247	44

D MANGANESE (V)

Manganese (V), the rarest of the higher oxidation states, occurs in the manganate (V) anion, and in MnOCl₃ It is even more prone to disproportionation than manganese (VI), existing only in strongly basic solution.

(1) Manganese oxide trichloride

This is the only oxide halide, although as with MnO_2Cl_2 the fluorine analogue should be capable of existence $MnOCl_3$ is a mint-green liquid, with a deep yellow vapour, formed by reducing $KMnO_4$ dissolved in HSO_3Cl with $CHCl_3$, or better with sucrose⁵. The pure liquid decomposes above O° to $MnCl_3$, and hydrolyses readily, MnO_4^{3-} being produced only if sufficient alkali is present to prevent its decomposition.

(ii) Manganates (V)

These were characterised by Lux⁴⁸ as recently as 1946, although other workers had previously obtained blue oxo-species of manganese without recognising their true nature Deep blue sodium manganate (V) is obtained⁴⁸⁻⁵⁰ on reduction of KMnO₄ in concentrated aqueous NaOH, with Na₂SO₃, KI, or HCOONa, or by oxidation of manganese (II) or MnO₂ in an alkaline melt^{48,49} A simple method for obtaining the Na, K, Rb compounds has recently been described⁵¹ Pure anhydrous alkali manganates (V) (including Li₃MnO₄) are formed⁵⁰ by heating the permanganate with MOH

Lux⁴⁸ obtained a deep blue hydrate which he formulated as Na₃MnO₄ 10H₂O, but Scholder et al.⁵⁰ suggested this was Na₃MnO₄ ½NaOH 12H₂O, and found that on recrystallisation from cold concentrated NaOH, Na₃MnO₄ 7H₂O is produced. A compound of limiting composition Na₃MnO₄.0 25NaOH.12H₂O, analogous to the corresponding variable, phosphate, and arsenate has been obtained⁵². Klemm showed that Na₃MnO₄.10H₂O contains MnV and not Mn^{VI} and Mn^{IV} by magnetic analysis⁵³

 $Ba_3(MnO_4)_2$ (refs 53, 54), $Sr_2(MnO_4)(OH)$ (refs 54, 55), $Ba_5(MnO_4)_3(OH)$ (ref. 56), and $Ba_5(MnO_4)_3(OH)$ (ref. 53) have been reported.

Electronic (Sect. E) and vibrational spectra (Table 2), have been reported, but no structural data are available for the MnO₄³⁻ ion. The magnetic moments of a number of MnV compounds have been reported by Klemm et al. ⁵⁷ as Na₃MnO₄ 10H₂O 2.8B M,

 $Ba_5(MnO_4)_3(OH)$ 2 83B M., $Ba_3(MnO_4)_2$ 2 83B M , K_3MnO_4 2.68B M.*, Rb_3MnO_4 2 61B M * and Cs_3MnO_4 2 57B M *

In solution, manganates (V) disproportionate into MnO_4^{2-} and MnO_2 , unless a large excess of alkali is present K_3MnO_4 is much more stable thermally than either $KMnO_4$ or K_2MnO_4 , in dry air it appears to be stable up to at least 900° , but is decomposed rapidly by moisture²⁸

A compound Na₅MnO₅ was reported in Scholder's review⁵⁴ but no details were given

E ELECTRONIC SPECTRA AND STRUCTURE OF THE TETRAOXOANIONS

The tetraoxoanions of manganese have provided fruitful discussion for workers interested in the energy levels and electronic spectra and structures of these tetrahedral $(XO_4)^{n-1}$ species, which are characterised by strong visible and near-ultraviolet absorptions. There have been many interpretations, and these frequently differ from one another

Wolfsberg and Helmholtz⁵⁸ (W-H) carried out some semi-empirical calculations on the permanganate ion, according to the molecular orbital scheme, and their most surprising result was the order of the first unfilled M O.'s ($3t_2 < 2e$) which is not in agreement with crystal field (C F) theory. Subsequently, Ballhausen and Liehr⁵⁹ (B-L) proposed a different scheme which is in agreement with C F, theory and is justified by intensity calculations. The latter proposals were supported by the studies of Carrington and coworkers⁶⁰⁻⁶³, who showed on the basis of ESR measurements that the unpaired electron in the MnO_4^{2-1} ion (d^1), occupied an e level. More recently, Fenske and Sweeney⁶⁴ concluded that if the empirical parameters of the W-H calculations are substantially altered, any order of levels can be obtained, and, consequently, any transition assignment justified. A calculation of Viste and Gray⁶⁵ (V-G) has confirmed the B-L order of levels, but with a different transition assignment.

Olean et al.⁶⁶ have carried out an S.C.F.—M O.—L.C.A.O. calculation for the MnO₄⁻ion, at d confirmed the order of levels previously assigned by B.—L. A new spectral assignment was presented, attributing to each observed absorption band two electronic transitions occurring between one of the occupied M.O.'s $(t_1, 2t_2, 1t_2)$ and the two lowest empty M.O.'s $(2e, 3t_2)$. These workers subsequently extended their calculations to the MnO₄²⁻ and MnO₄³⁻ ions⁶⁷

The spectra of the three ions are shown in Fig. 1, and Table 5 contains the spectral assignments proposed by various workers.

F MANGANESE (IV)

 Mn^{IV} has a more extensive chemistry than the higher oxidation states, but, in general, the compounds are not particularly stable. The apparent exception, MnO_2 , owes its "stability" to its insolubility; other Mn^{IV} compounds are readily hydrolysed and reduced. There are few simple compounds, the majority of manganese (IV) compounds containing the element in a complex anion.

^{*}Low values may be due to the presence of some manganate (VI)

TABLE 5

Spectralass	gnments of t	Spectral assignments of tetraoxoanions							
Anton	Band maxima (cm ⁻¹)	Wolfsberg~ Helmholtz ⁵³	Ballhausen Liehr ^s ?	Carrington Jorgensen ^{e 3}	Carrington Symons ⁶⁰	Viste Gray ⁶⁵	Kingsley et al ⁶⁸	Orgel 69	Oteari et al. ^{66,67}
[MnO ₄]		f, + 3f ₂	t, → 2e	l, → 2e 21, → 2e		t ₁ → 2e			$\begin{bmatrix} t_1 \rightarrow 3t_3 \\ t_2 \rightarrow 2e \end{bmatrix}$
		$2t_2 \rightarrow 3t_2$	$t_1 \rightarrow 3t_2$	$t_1 \rightarrow 3t_2$ $2t_3 \rightarrow 3t_3$					$2t_2 \rightarrow 2e$ $2t_2 \rightarrow 3t_3$
									112 + 20 112 + 312
[MnO ₄] ² "	(12,000)			•	$2e \to 3r_2(^2T_2)$	•			$2e \to 3r_2(T_2)$
	16,580 22,830			$2e \to 3t_2^{(7)}$ $t_1 \to 2e$	$t_1 \to 2e(^3T_3)$ $t_1 \to 2e(^2T_1)$	$2e \rightarrow 3t_s$ $t_1 \rightarrow 2e$			$t_1 \to 2e(^2T_1)$ $t_1 \to 2e(^2T_1)$
	28,170			$2t_1 \rightarrow 2e(^{\eta})$	$l_1 \rightarrow 3l_2(^3T_2)$	21 ₂ → 2e			$\begin{cases} 2t_2 + 2e(^2T_1) \\ t_1 + 3t_2(^2T_2) \end{cases}$
	33,200				$\ell_1 \to 3\ell_2(^2T_1)$				$\begin{cases} 2l_1 + 2e(2T_2) \\ 2l_2 + 3l_1(^2T_2) \end{cases}$
[MnO ₄] ³⁻	11,000			2e → 3t ₂	$t_1 \to 2e(^3T_1)$	$2e \to 3t_1(^3T_2)$ $2e \to 3t_2(^3T_1)$	$2e \rightarrow 3t_2(^3T_2)$ $t_1 \rightarrow 2e(^3T_1)$	$2e \rightarrow 3t_2(^3T_2)$ $2e \rightarrow 3t_2(^3T_1)$	$2e \to 3t_2(^3T_3)$ $2e \to 3t_2(^3T_3)$ $2e \to 3t_2(^3T_1)$
	30,800			$t_1 \rightarrow 2\varepsilon$	$t_1 \to 3t_2(^3T_1)$ $t_1 \to 2e(^3T_1)$	$\ell_1 \rightarrow 2e(^3T_1)$	$2e \to 3t_2(^3T_1)$ $t_1 \to 3T_2(^3T_1)$	$2e \to 3t_2(^3T_1)$ $t_1 \to 3T_1(^3T_1)$ $t_1 \to 2e(^3T_1)$ $t_1 \to 3t_2(^3T_1)$	$t_1 \to 3t_2(^3T_1)$

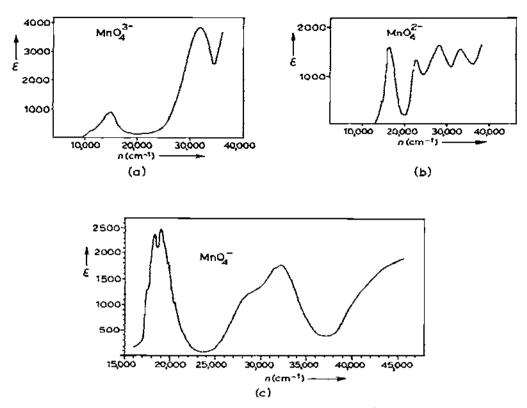


Fig 1 Electronic spectra of the tetraoxoanions (a), (b), Olean et al ⁶⁷, (c) G van den Boef, H J van der Beek and T. Braaf Rec Trav. Chim., 77 (1958) 1064 Reproduced by permission

(i) Halides

The only halide is the very reactive MnF_4 , there is little evidence for $MnCl_4$ despite a number of claims in the older literature⁷⁰. Sharpe and $Woolf^{71}$ were unable to isolate MnF_4 from the reaction of $Mn(IO_3)_2$ with BrF_3 , although the solution obtained gave Mn^{IV} fluorocomplexes upon addition of KF. The blue, very hygroscopic, tetrafluoride is produced by fluorination of manganese powder in a fluidised bed⁷² or of MnF_2 , MnF_3 , $LiMnF_5$, or Li_2MnF_6 , at 550° (ref. 73). It obeys the Cune—Weiss law with $\mu_{eff} \approx 3.48$ B.M. Fluorine is lost on standing, and it hydrolyses instantly in water. A small amount of red solid is produced from CIF and manganese powder in a fluidised bed⁷², this may be a mixed halide, e.g. $MnClF_3$. There appear to be no oxide halides known

(11) Complex halides

Hexahalomanganates (IV), $MnX_6^{2-}(X = Cl, F)$, and pentafluoromanganates (IV), MnF_5^- , are known All attempts to prepare bromine analogues have failed.

Hexafluoromanganates (IV) are obtained by four basic methods.

- (a) Direct fluorination of an intimate mixture of MnSO₄, MnCl₂, or NH₄MnF₃, and the chloride, sulphate, or carbonate of the desired cation.
 - (b) Fluorination of the corresponding permanganate, manganate (VI), or manganate (IV)
 - (c) Electrolytic oxidation of MnF₂ in 40% HF in the presence of the metal fluoride.
- (d) Fluorination of the starting materials in (a) or (b) with BrF₃ (ref. 89). Some properties of these compounds are reported in Table 6, and their structures in Table 7

 $(NO)_2MnF_6$ and the heavy metal hexafluoromanganates are instantly decomposed by water, the alkali metal compounds hydrolyse only slowly in the cold. The MnF_6^{2-} ion (d^3) is a regular octahedron ^{77,87}, with Mn-F=1 72-1.75 Å, and exhibits ν (Mn-F) at 625 cm⁻¹ (ref. 81) Asprey et al. ^{97a} have recently studied the IR and Raman spectra of some hexafluoromanganates (IV)

The brick-red pentafluoromanganates (IV), formed on fluorination of MMnF₃ (M = K,Rb,Cs) at 450–500°, or of LiF + MnF₂ at 350°, are instantly decomposed by water⁷³, ⁷⁴ They have magnetic moments in the range 3 7–3 9 B M, and the Mn–F stretching frequency in KMnF₅ is at 617 cm⁻¹ (ref. 81). Although the structures have not been determined, it seems probable that they contain condensed MnF₆ units.

The very dark red hexachloromanganates (IV) are prepared^{88,90} by adding saturated alkali metal chloride solution to calcium permanganate in 40% hydrochloric acid at 0°. The potassium salt is also obtained from KMnO₄ and saturated aqueous HCl (ref. 88), or by the reaction of potassium acetate and manganese (III) acetate in the presence of a large excess of acetyl chloride⁹¹. They readily lose chlorine on standing K_2 MnCl₆ has $\mu_{eff} = 3.9$ B M.⁹² and ν (Mn-Cl) = 358 cm⁻¹ (ref. 93)

The diffuse reflectance spectra of the hexafluoromanganates have been studied by a number of workers Allen et al 4 found five bands in the spectrum of K_2MnF_6 at 14 0 kK ($^4A_{2g} \rightarrow ^2E_g$, $^2T_{1g}$, t_{2g}^3) 29 3 kK ($^4A_{2g} \rightarrow ^2T_{2g}$, t_{2g}^3), 22.2 kK ($^4A_{2g} \rightarrow ^2T_{2g}$, $t_{2g}^2e_g$), 28 6 kK ($^4A_{2g} \rightarrow ^2T_{1g}$, $t_{2g}^2e_g$), 38 8 kK ($\pi \rightarrow t_{2g}$) Novotny and Sturgeon reported the spectra of the K, Rb, Cs and Ba compounds, and examined the effect of the method of preparation on the spectrum of the K salt. Moews reported bands at 15 4, 16.6, 27.4, 33 3 kK for K_2MnCl_6 , but this was disputed by other workers, who reported absorption at 17 8, 25 0, 43 5 kK, which they assigned as $^4t_2 \rightarrow ^4t_5$, $^4t_2 \rightarrow ^4t_4$, and charge transfer, respectively 97

(ui) Manganese dioxide

There is an extensive literature on MnO_2 , only a very small amount of which will be mentioned here $^{98-110}$ The common form, β -MnO₂ (pyrolusite), is made by heating manganese (II) nitrate at $150-160^{\circ}$, extracting with water, drying at 200° , and repeatedly extracting with boiling nitric acid to remove lower oxides 105 Several modifications of the basic method have been described 98 and most of the other forms of MnO₂ are said 102 to change into the β variety on heating in air at 400° It has an ideal composition MnO_{200} , with the rutile structure a=4.38, c=2.86 Å, but it is usually oxygen deficient 98 Reducing agents attack it readily in acid solution, alkalis cause disproportionation, whilst concentrated H_2SO_4 at 110° forms Mn^{III} sulphate and oxygen.

TABLE 6
Hevafluoromanganates (IV)

Compound	Preparation*	Colour	Magnetic moment (B.M.)	Ref
L12MnF	a	Yellow	3 85	74
Na ₂ MnF ₆	a, c	Yellow		75
K ₂ MnF ₆	a, c, d	Yellow	3 86	71, 75, 79,
				82-84
Rb ₂ MnF ₆	a, c	Yeilow		75, 79
Cs ₂ MnF ₆	a, c	Yellow		75, 79
(NH ₄) ₃ MnF ₆	С	Yellow		85
CaMnF _o	a	Yellow	3 87	78, 79, 87
SrMnF ₆	a, b	Yellow	3 82	78-80
BaMnF ₆	a, b	Yellow	3 90	78-80
MgMnF ₆	a	Orange-yellow	39	78, 79, 87
(NO) ₂ MnF ₆	đ	Yellow		86
CdMnF,	a	Yellow	3 78	87
NiMnF ₆	2	Ochre-yellow	5 38	87
ZnMnF ₆	a	Orange-yellow		37
HgMnF ₆	a	Orange		87
CuMnF ₆	a	Bright red	4 43	87
AgMnF.	ь	Dark brown	4 43	87

^{*}Letters refer to methods a, b, c and d discussed in text

TABLE 7
Structural parameters of Mn^{IV} complex halides

Compound	Туре		Parameters (A)		Ref	
			a	c		
L ₁₂ MnF ₆	Na ₂ StF ₆ ,	hexagonal	8 42	4 59	74	
Na ₂ MnF ₆	Na ₂ S ₁ F ₆ ,	hexagonal	9 03	5 1 3	75, 76	
K ₂ MnF ₆	"Rb, MnF,",		5 67	9.35	77	
4 0		trigonal	5 71	4 65	<i>1</i> 7	
	K ₂ PtCl ₆ ,	cubic	8 28		77	
Rb ₂ MnF ₆	"Rb, MnF, ",	hexagonal	5 86	9 50	77	
	K ₂ PtCl ₄		8 40		77	
Cs ₂ MnF ₆	K,PtCl,		8.92		77	
(NH ₄) ₂ MnF ₆	"Rb2MnF4",		5 9 1	9 55	85	
MgMnF	LiSbF.	hexagonal	5 01	13 17	78, 79, 87	
CaMnF ₆	LiSbF.	hexagonal	5 21	14 17	78, 79, 87	
SrMnF ₄	BaGeF ₆ ,	hexagonal	7.02	6 78	78, 79	
BaMnF ₄	BaGeF,	hexagonal	7 35	7 0 9	78, <i>7</i> 9, 80	
CdMnF ₄	LiSbF _s ,	hexagonal	5 08	14 00	87	
NiMnF ₆	VF ₃ ,	hexagonal	4.91	13 16	87	
ZnMnF.	VF ₃ ,	hevagonal	4 96	13 29	87	
HgMnF ₆	LISEF,	hexagonal	5 08	14 12	87	
K ₂ MnCl ₆	K, PtCl.	cubic	9 6445 ± 0 002		88	
Rb, MnCl,	K2PtCl6,	cubic	9 82 ± 0 02		88	
Cs ₂ MnCl ₆	K,PtCl,	cubic	10.17 ± 0.02		88	
(NH ₄) ₂ MnCl ₅	K,PtCl,	cubic	9.80 ± 0.02		88	
(NMe ₄) ₂ MnCl ₆	K, PtCl	cubic	12.70 ± 0.02		88	

A large number of varieties of MnO₂ have been reported, but despite a great deal of work, the nature of some of these is still in doubt. Many of them contain Mn^{III} ions, water, or other metal ions, and exist over a range of compositions. A brief discussion of some of these forms is given below (see refs. 102—104 for references to earlier work)

Glemser and coworkers $^{102-104}$ described six other varieties, α , γ , δ , ϵ , η , and the mineral ramsdelite. The latter is orthorhombic a=4.53, b=9.27, c=2.87 Å. α -MnO₂ is related to the numeral cryptomelane, and always contains other large cations, it has been formulated as A_x Mn₈O₁₆ (A = K, Ba, etc., x < 1) $^{101, 102}$. All forms lose oxygen on heating, eventually forming Mn₂O₃. It has since been shown that δ -MnO₂ is a ternary oxide (see below). The phase Mn(OH)₂ 2MnO₂ is formed 106 upon wet oxidation of γ -Mn₂O₃ above MnO₁₄.

(iv) "Mixed-valence oxides"

The manganese—oxygen system, especially in the presence of other cations, and of water, is very complex, and a number of compounds have been discovered in addition to the simple oxides of Mn^{II} , Mn^{III} , and Mn^{IV} . The older literature contains several reports of oxides containing manganese in more than one oxidation state⁴⁵, many of these must be regarded as very doubtful and will not be discussed further. Compounds that do fit into the category of mixed-valence oxides are Mn_3O_4 , Mn_5O_8 , and the recently discovered Mn_7O_{12} 6H₂O, and Mn_7O_{13} 5H₂O

 α -Mn₃O₄ occurs as the mineral hausmannite, and is the product⁹⁸ of heating any oxide, and many manganese salts, in air at 1000° The purple-red powder has a distorted spinel structure (distortion is caused by the d^4 Mn^{III} ions), a = 8 13 Å, c/a = 1 16 It is a normal spinel Mn^{II}Mn₂^{III}O₄ (ref 111) not Mn₂^{III}Mn^{IV}O₄ as reported in some of the earlier work. It changes reversibly into a cubic modification β -Mn₃O₄ above 1170° Concentrated H₂SO₄ produces Mn^{II} and Mn^{III} sulphates, and HNO₃ causes disproportionation

$$Mn_3O_4 + 4 HNO_3 = 2 Mn(NO_3)_2 + MnO_2 + 2 H_2O$$

 Mn_5O_8 is produced on oxidation of Mn_3O_4 in a nitrogen/oxygen stream at 250–500°, or by heating β -MnO(OH) in air below 500° (ref. 113). It is a black powder, which loses oxygen above 550° to form α -Mn₂O₃. The structure determination supports the formulation $Mn_2^{II}Mn_3^{IV}O_8$, there is a distorted octahedral arrangement of oxygen atoms around Mn^{IV} , and a distorted trigonal prism around Mn^{II} (ref. 114)

Giovanoli et al. 108,109 found that Na₄Mn₁₄O₂₇ 9H₂O, reacts with dilute nitric acid to produce manganese (III) manganate (IV) Mn₇O₁₃ 5H₂O (hexagonal a=2 84, c=7 27 Å), and with Mn(NO₃)₂ solution to form manganese (II) manganate (IV) Mn₇O₁₂ 6H₂O. Prolonged digestion of Mn₇O₁₃ 5H₂O with nitric acid produces γ -MnO₂, upon heating Mn₂O₁₃.5H₂O, the first product is γ -MnO₂ and finally a distorted β -MnO₂ results δ -MnO₂ seems to be related to these manganate (IV) species with some of the Mn^{III} replaced by Mn^{IV}, it also contains a fairly large amount of alkali metal ions^{107,109} The structural relationships of these compounds, and the reduction of Mn₇O₁₃ 5H₂O to γ -MnO(OH) with cinnamyl alcohol, have been described¹¹⁰

(v) Manganates (IV)

A large number of mixed oxides containing Mn^{IV}, often described as manganates (IV) are known, but will not be described here.

On heating a mixture of $MnO_2 + 2KOH$, Scholder and Protzer⁵¹ obtained a mixture of K_3MnO_4 , $KMnO_2$, and K_2MnO_3 At 200° this contained 75 mole % of K_2MnO_3 , whilst at 550° only 18 mole % was present. Similar results were obtained with $MnO_2 + 2RbOH$. Some Mn^{IV} always disproportionates and the authors report that the isolation of pure K_2MnO_3 is not possible.

Scholder⁵⁴ reported the compounds Na₄MnO₄, Ba₂MnO₄, Sr₂MnO₄, and Li₂MnO₃, but no details were given. The crystal structure of Ba₃MnO₅ was determined by Mansmann¹¹⁵, who found it to be isostructural with Cs₃CoCl₅ MMnO₃ (M = Sr, Ba) and substances formulated CaO_xMnO₂ ($x = \frac{1}{2}, 1, 2, 3, 5$) have been reported⁴⁵.

A number of "mixed valence" manganates exist, and will be dealt with here for convenience KMnO₂ and RbMnO₂ oxidise readily in air to substances of empirical formulae MMnO_{2 25} (M = Rb, K) These were formulated⁵¹ as M₄Mn₂^{III}Mn₂^{IV}O₉ Giovanoli et al ¹⁰⁸ found that the oxidation of fresh Mn(OH)₂ in aqueous NaOH with molecular oxygen produced sodium manganese (II, III) manganate (IV), Na₄Mn₁₄O₂₇ 9H₂O, and determined its structure. It has a double-layer structure resembling chalcophanite. A phase K₂Mn₄O₇₈₋₈₀ was observed⁵¹ from the reaction of MnO₂ with 2KOH, which is close to the composition observed by Delano¹¹⁶ for the compound formed from a mixture of 4K₂CO₃ + MnO₂. Recent studies of the decomposition products of KMnO₄ have shown²⁸ that the water-insoluble product(s) have compositions approximating to "K₄Mn₇O₁₆", which may indicate that they are related to some of the compounds discussed above Further work is required, however, before any conclusion can be reached.

(vi) Peroxomanganates (IV)

By reaction of KMnO₄ with H_2O_2 in 30% KOH at -18° , Scholder obtained $K_2H_2Mn(O)(O_2)_3$ as a dark red crystalline solid, which decomposed to MnO_2 and O_2 in water, to Mn^H and O_2 in acids, and tended to explode on warming¹¹⁷ The occurrence of K_3H $Mn(O)(O_2)_3$ and $K_2H_2Mn(O_2)_4$ was also postulated

(vii) Manganese (IV) compounds of oxygen donor ligands

The only simple compound appears to be the black crystalline $Mn(SO_4)_2$ obtained on oxidising $MnSO_4$ in hot concentrated H_2SO_4 with permanganate ¹¹⁹, which hydrolyses to MnO_2 even in dilute sulphuric acid. Anodic dissolution of manganese in 18-22 N sulphuric acid produces ¹¹⁸ a dark-coloured solution containing Mn^{IV} .

Complexes with orthoperiodate, iodate, tellurate, and rather surprisingly, oxalate, are probably the best known. Reimer and Lister¹²⁰ showed that the dark red crystals obtained from MnSO₄ and alkali periodate solutions, are MMnlO₆ $\frac{1}{2}$ H₂O (M = Na, K), not M₂Mn₂I₂O₁₁ as originally reported¹²¹ They have $\mu_{\rm eff} \approx 4.17$ B M (Na), 3.87 B M (K), and are remarkably stable, being insoluble in, and not hydrolysed by water. On oxidising the mixture of MnSO₄ and periodate solutions with hypochlorite, two other compounds,

 $Na_7H_4Mn(IO_6)_3$. $17H_2O$ and $K_7H_4Mn(IO_6)_3$ $8H_2O$ result¹²² They are also red, but hydrolyse slowly in water to MnO_4^- , IO_3^- , and $H_3IO_6^{2-}$

Alkaline hypochlorite oxidises MnSO₄, mixed with an alkali metal tellurate, to dark red complexes. $K_6H_8Mn(TeO_6)_3$ 5H₂O ($\mu_{eff}=3$ 30 B M) and Na₇H₇Mn(TeO₆)₃ 3H₂O, (refs 123, 124) which are less stable in solution than the periodate analogues¹²⁵ The spectra and structures of a number of periodato-, and tellurato-manganese (IV) compounds have been determined^{123,126,127}

Complex iodates, $M_2Mn(IO_3)_6$ (M = NH₄, K) and BaMn(IO₃)₆, are produced as brown-violet solids on boiling MnO₂, iodic acid, and the metal iodate solutions¹²⁸ The K salt has $\mu_{\rm eff}$ = 3 82 B M., and dissolves in water to give a brown solution, which deposits a brown precipitate (MnO₂?), its IR spectrum has been reported¹²⁹

Dark olive-green crystals of $K_2Mn(C_2O_4)_2(OH)_2$ $2H_2O$, which on microscopic examination proves to be a mixture of orange and green crystals, possibly the *cis* and *trans* isomers, are formed ¹³⁰ by the reaction of oxalic acid, potassium oxalate, and $KMnO_a$ in aqueous solution at 0° . The crystals decompose at room temperature, and the solutions slowly turn red-brown, indicating the formation of Mn^{HI} .

Other complexes include the red-brown formaldoxime $Na_2Mn(CH_2NO)_6$, obtained on air oxidation of manganese (II) solutions containing formaldoxime¹³¹, black crystalline $(NH_4)_2H_2MnE_2O_9$ (E = P. As)¹³², and the curious yellow-red glycerylmanganates (IV), e g, $Na_2Mn(C_3H_5O_3)_2$, formed on heating freship precipitated MnO_2 with glycerol and aqueous alkali¹³³

(viii) Manganese (IV) complexes of N-donor ligands

These seem to be confined to biguanidine and 2,2'-bipyridyl complexes. On treatment of alkaline KMnO₄ with biguanidine, or by oxidising Mn¹¹ and biguanidine with alkaline persulphate, bright red crystals [(OH)₂Mn(BigH)₂](OH)₂ were formed, from which the NO₃⁻, SO₄²⁻, C₂O₄²⁻, CrO₄²⁻, and IO₃⁻, can be obtained by metathesis. They have unusually low magnetic moments, in the range 2.0–2 5B.M.¹³⁴.

Mn(bipy)Cl₄ which is formed¹³⁵ as black crystals from the reaction of 2,2'-bipyridyl with KMnO₄ in concentrated HCl, loses chlorine on standing, and obeys the Curie—Weiss law with $\mu_{\rm eff} = 3.82$ B M. and $\theta = 8^{\circ}$ (ref. 136) The o-phenanthroline analogue has not been obtained^{135,137}, but red-brown [MnO(phen)₂](ClO₄)₂ $\frac{1}{2}$ H₂O forms on treating MnCl₃(phen)H₂O mixed with o-phenanthroline, with HClO₄. ¹³⁶ It is antiferromagnetic, and may be an oxygen-bridged dimer, viz.

although more highly condensed structures are also possible. Some N-donor complexes which contain both Mn^{IV} and Mn^{III} , are discussed under Mn^{III} .

$(ix) K_2Mn(CN)_6$

Nitrosyl chloride oxidises $K_3Mn(CN)_6$ in DMF to canary yellow $K_2Mn(CN)_6$, $\mu_{eff} = 3.94$ B.M., which is instantly decomposed by water¹³⁸ Yakimach¹³⁹ claimed to have obtained $K_4Mn(CN)_8$ by reaction of KMnO₄ with alkaline KCN, but this was denied by Goldenberg¹⁴⁰, who could not repeat the preparation, and obtained a manganese (III) cyanocomplex contaminated with KOH. The KMnllMnIII(CN)₆ complex is similarly obtained¹³⁸ from NOCl and $K_2Mn^{II}Mn^{II}(CN)_6$

(x) Heteropolyanions

Manganese (IV), like a number of other transition metal higher oxidation states, is stabilised by incorporation into a heteropolyanion. The 9-molybdomanganates (IV), e.g. (NH₄)₆MnMo₉O₃₂ 8H₂O (ref. 141) have been known for some time, and recently 12-niobomanganates (IV)^{142,143} have been obtained, and the structure of Na₁₂MnNb₁₂O₃₈ - 5OH₂O determined ¹⁴³. Flynn and Stucky ^{144,145} have described three types of vanadomanganate (IV) - K_5 MnV₁₁O₃₂ 10H₂O. K_5 HMn₃V₁₂O₃₉ 10H₂O, and K_7 MnV₁₃O₃₈. - 16-18H₂O.

G MANGANESE (III)

 Mn^{III} has a far more extensive chemistry than any of the other oxidation states discussed. There are relatively few simple compounds, but Mn^{III} is fairly stable in complexes, almost all of which are anionic, e.g. fluoro, chloro, cyano, or neutral β -diketonates; cationic species are rare. The complexes with oxygen donor ligands have been known for many years, but complexes with nitrogen donors have only recently been characterised. Sidgwick¹, for example, stated in 1950 that "trivalent manganese has no tendency to coordinate with nitrogen to form amines, nitrocomplexes, or in other ways". There is an almost total absence of complexes of the heavier Group V donors.

(1) Halides

A red-purple trifluoride, and a very unstable trichloride are known. MnF_3 is prepared $^{146-149}$ by fluorination of MnF_2 , $MnCl_2$, various manganese oxides, or, best, Mnl_2 , or by dissolving $Mn(IO_3)_2$ in BrF_3 and evaporating at 140° (ref. 71, 150). Ruby-red crystals of the hydrate MnF_3 $2H_2O$ are obtained on dissolving Mn_2O_3 in aqueous HF, or by oxidising Mn^{II} in HF solution with $KMnO_4$, or electrolytically 151,152 . The anhydrous compound is moisture-sensitive, but the hydrate is not hydrolysed in water in the presence of HF (ref. 151). MnF_3 liberates fluorine on heating, although the dissociation pressure is less than 0.1 atm at 600° (ref. 153) and has been extensively studied as a fluorinating agent, especially in organic chemistry 147,154 . The structure is most unusual in that there are three different Mn-F distances. The lattice is monoclinic, a=8.509, b=5.037, c=13.448 Å, and the structure consists 150 of distorted MnF_6 octahedra sharing corners with Mn-F=2.09, 1.92, 1.79 Å and Mn-F-Mn (ave.) 146° . The distortion has been discussed in terms of crystal field theory and the Jahn-Teller effect by Hepworth et al. 155 . Mass

spectra¹⁵⁶ show that MnF₃ evaporates principally as the monomer, whilst the value for the heat of formation (-238 kcal. mole⁻¹) coupled with the heat of sublimation (68.0 ± 3 kcal. mole⁻¹ at 298° K leads to a value for the average Mn-F bond energy of 97.9 ± 4 kcal mole⁻¹ The bond dissociation energies are D(Mn-F) = 101, D(FMn-F) = 119, $D(\text{F}_2\text{Mn-F}) \approx 74$ kcal mole⁻¹ MnF₃ obeys the Curie-Weiss law with $\mu_{\text{eff}} = 5.0$ B M and $\theta = 8^{\circ}$, and becomes antiferromagnetic at very low temperatures¹⁵⁷ An adduct MnF₃.4XeF₆, or possibly MnF₄.4XeF₆, is formed on heating manganese with xenon and excess fluorine under pressure¹⁵⁸

A black solid, analysing as MnCl₃ is formed⁷⁰ on suspending MnO₂ in dry ether at -78°, saturating with dry HCl, and precipitating with CCl₄. The action of liquid HCl on Mn(OAc)₃ at -100° produces brown crystalline MnCl₃, soluble in organic solvents to green solutions, and readily losing chlorine above about -35° (ref. 159).

(u) Complex halides

Mn^{III} forms 4 number of complex anions with the halogens, viz MnF₆³⁻, MnF₅²⁻, MnF₄⁻ MnCl₆³⁻, and MnCl₅²⁻ but all attempts to prepare bromocomplexes have failed K₃MnF₆ and K₂NaMnF₆ are formed on fusing K₂MnF₅ H₂O with MHF₂ (M = K, Na)^{160,162} and Cs₂KMnF₆ has recently been obtained by direct fluorination¹⁶¹ K₃MnF₆ dissolves in aqueous HF to reform the MnF₅ H₂O²⁻ ion, and is completely hydrolysed by water [M(NH₃)₆] MnF₆ (M = Co, Cr, Rh) are obtained on oxidising Mn^{II} in 40% HF with KMnO₄ in the presence of the cation and NH₄F (ref. 163). The IR spectra of these compounds have been examined, and discussed in terms of the distorted MnF₆³⁻ ion and the Jahn—Teller effect¹⁶³

Pink crystals of K_2MnF_5 H_2O , which are hydrolysed by water, form^{82,152} on oxidising MnF_2 in 40% HF followed by addition of KHF_2 Cs_2MnF_5 H_2O was crystallised from mixed solutions of CsF and MnF_3 in aqueous HF, whilst M_2MnF_5 ($M=L_1$, Na, NH_4) are formed^{166,167} on adding MHF_2 to MnO(OH) in 20% HF. A substance which is probably $BaMnF_5$ is formed⁷⁹ on hydrogen reduction of $BaMnF_6$ at 400°. The "MnF₅" group in $(NH_4)_2MnF_5$ is actually a distorted MnF_6 octahedron, Mn-F=1 84, 1.85, 2.12 Å, the octahedra being linked into infinite chains¹⁶⁷ (Note added in proof. a crystal structure of K_2MnF_5 . H_2O has been determined by X-ray crystallography. The water molecule is not coordinated, and bridging fluorine atoms complete a distorted octahedron about the manganese. A J. Edwards, J. Chem. Soc. A, (1971) 2653.)

The brown-violet MMnF₄ (M = Li, K, Rb) are formed 73,74 by hydrogen reduction of the corresponding MMnF₅ at $150-250^{\circ}$

Hexachloromanganates (III) are only found with large cations. Hatfield et al. ¹⁶⁸ prepared [M(pn)₃] MnCl₆ (M = Co, Rh) by oxidation of MnSO₄ in concentrated hydrochloric acid with NaClO₃ in the presence of [M(pn)₃] Cl₃. The Co compound, and the less stable [Co(en)₃] MnCl₆ 2H₂O may be obtained using KMnO₄ as the oxidising agent ¹⁶⁹. These compounds are instantly hydrolysed in water, decompose on keeping, and show rather high ν (Mn-Cl) frequencies compared with other hexachlorometallates (III)⁹³.

(NEt₄)₂MnCl₅ is formed by reaction of MnO₂ with acetyl chloride in ether¹⁷¹, or by saturating MnO₂ suspended in CCl₄ with dry HCl and ether-extracting the black residue¹⁷⁰ In both cases, addition of NEt₄Cl precipitates the dark green pentachloromanganate Addition of the ligand to the dark brown solution of KMnO₄ in concentrated HCl precipitates

TABLE 8

Complex halides of manganese (III)

Compound	Colour	Structural data		Magnetic moment (B M)	Ref
K ₃ MnF ₆	Blue-violet	Tetragonal,	a = 8 75 c = 8 30 A	4 95	160
K ₂ NaMnF ₆		Tetragonal,	a = 8 171 c = 8 577		162
Cs ₂ KMnF ₆	Violet	Tetragonal,	a = 893 c = 926	4 88	161
(NH ₄) ₃ MnF ₆	Reddish				164
[Co(NH ₃), [MnF ₄	Orange-brown	Cubic,	a = 997	4 94	163
[Cr(NH ₃) ₆]MnF ₆	Golden-brown	Cubic,	a = 10.06		163
$[Rh(NH_3)_6]MnF_4$	Violet	Cubic,	a = 10.05		163
K ₂ MnF ₅ H ₂ O	Pink			3 32	82, 152, 165
Na ₂ MnF ₅	Pınk	Orthorhombic,	a = 608		
- •			b = 7.86		
			c = 9.28		167
Lt ₂ MnF ₄	Pmk	Orthorhombic,	a = 546		
			b = 7.78		
			c = 881		167
(NH ₄) ₂ MnF ₅	Pink	Orthorhombic,	a = 620		
	Ď		b = 794		
	₹		c = 10.72		167, 167a
RbMnF ₄	Brown-violet			5 0	74
KMnF ₄	Brown-violet			49	74
L1MnF ₄	Brown			4.7	74
(Co(pn) ₃ MnCl ₆	Dark brown			491	168
[Co(en) ₃] MnCl ₆ 2H ₂ O	Dark brown			4 94	169
(NEt ₄) ₂ MnCl ₅	Dark green			50	170, 171
(phenH ₂)MnCl ₅	Green-black			5 0	135, 136
(bipyH ₂)MnCl ₃	Green-black		$a = 13 \ 204$	4 88	135, 136, 173
			b = 7 103		
			c = 15 339		

the green-black (phenH₂)MnCl₅ and (bipyH₂)MnCl₅ (ref 135) The structure of the latter has been determined, it contains discrete $MnCl_5^{2-}$ ions which are square pyramidal with a distortion towards trigonal bipyramidal, Mn-Cl = 2 53, 2 34 Å (ref 173) The alkali metal analogues have been described, but there is some doubt as to whether they are M₂MnCl₅ or M₂MnCl₅ H₂O, and they would repay further study^{90,172}

(m) Oxide

 α -Mn₂O₃ is best prepared by decomposing manganese (II) nitrate at 150–200°, and then heating the product to constant weight at 600°, above this temperature the product obtained is not completely stoichiometric ^{98,105}. It is the normal product of heating many manganese compounds in air between 600–800°, but above 900° oxygen is lost to form Mn₃O₄. The structure is body-centred cubic, a = 9.401 Å (c-sesquioxide type)¹⁷⁴

Coord Chem. Rev., 7 (1972) 353-384

 γ -Mn₂O₃ was reported as a black powder obtained by careful dehydration of γ -MnO(OH) (ref. 175), but recent work indicates that the γ -Mn₂O₃ phase exists only in the range MnO_{1.33-1.40} and readily changes into α -Mn₂O₃ on heating ¹⁰⁶. The X-ray diffraction pattern is said to be similar to that of Mn₃O₄ to which it is related in the same way as γ -Fe₂O₃ is to Fe₃O₄.

There is much confusion in the literature about the nature of the various hydrated oxides of Mn^{III} . There is no good evidence for $Mn(OH)_3$, but two forms of MnO(OH) seem well-established α -MnO(OH) (manganite) and γ -MnO(OH) (groutite) are both formed by the oxidation of $Mn(OH)_2$ under carefully controlled conditions¹⁰⁰. This reaction can also yield MnO_2 (various forms), manganates (III), manganates (IV), and a number of other products, so the confusion in the literature is not surprising! A β -MnO(OH) was also reported to be formed in this reaction^{100,177} but this is now in doubt¹⁰⁶ Both α -and γ -MnO(OH) contain Mn^{III} surrounded octahedrally by oxygen atoms, with all the latter involved in hydrogen bonding¹⁷⁶ The difference m structures is in the extent of the distortion of the octahedron, in α -MnO(OH) this is quite small with average Mn-O = 1.89 Å, whilst in γ -MnO(OH) there are four oxygens at 1 88 Å, and two at 2 30 Å, a much more distorted structure.

(iv) Manganates (III)

The large number of complex c.cdes will not be discussed Scholder and Kyri¹⁷⁸ found that Mn(OH)₂ in 50% NaOH is oxidised to NaMnO₂, also obtained on heating Mn₂O₃ and Na₂CO₃ in air at 1000°, or along with the K, Rb analogues by heating a mixture of Mn₂O₃ and MOH in a 1 2 ratio in nitrogen⁵¹ LiMnO₂ is formed by fusing the constituent oxides in argon¹⁷⁹ Scholder and Kyri¹⁷⁸ also reported Na₃Mn(OH)₆.2 4H₂O, Na₄Mn(OH)₇ 5H₂O, and the Ba and Sr salts of the ions Mn(OH)₅²⁻, Mn(OH)₆, and Mn(OH)₇⁴⁻.

 $M_2Mn_4O_7$ (M = K, Rb) are formed on heating 1.1 mixtures of Mn_2O_3 and MOH^{51} .

(v) Manganese (III) compounds with oxygen donor ligands

Green $Mn_2(SO_4)_3$ is formed on dissolving KMnO₄, MnO₂, or Mn_2O_3 in hot concentrated sulphuric acid, and drying the product at 130°. It dissolves in 70% H_2SO_4 and on cooling red HMn(SO_4)₂ $2H_2O$ crystallises, but in more didute acid, hydrolysis occurs ^{180,181} Violet solutions of Mn^{III} are forme 1 by electrolysis of MnSO₄ in sulphuric acid solution ¹⁸² Alums are formed with alkali sulpha'es, there are double sulphates with Al, Cr^{III} and Fe^{III}. CsMn(SO_4)₂ $12H_2O$ is ruby-red, melts at 40° , and has $\mu_{eff} = 4.9$ B.M, the Rb, K, NH₄ analogues are known ^{183,184} but are less stable, and all are readily hydrolysed

Grey-green $MnPO_4.H_2O$ precipitates on oxidising Mn^{II} in phosphoric acid solution, but redissolves in concentrated H_3PO_4 to form a violet solution, said by Meyer and Marek¹⁶⁵ to contain $H_3Mn(PO_4)_2$, from which double salts with alkali phosphates, e.g. $Na_2HMn(PO_4)_2.2H_2O$, can be isolated. On dilution of the violet solution $MnPO_4$ H_2O is precipitated. Several Mn^{III} salts of the condensed phosphoric acids are known⁴⁵.

Manganese (III) acetate is one of the easiest Mn^{III} compounds to obtain, and is a convenient starting material for the synthesis of several others. The cinnamon-brown anhydrous compound is produced in the violent reaction between Mn(NO₃)₆.6H₂O and acetic

anhydride¹⁵⁹, and the dihydrate by oxidation of the manganese (11) compound in glacial acetic acid with chlorine or KMnO₄ (ref. 186)

Cartledge and Eriks¹⁸⁷ prepared the trisoxalato and bisoxalato complexes of Mn^{III} by oxidation of the corresponding Mn^{II} complexes with KMnO₄. When care was taken to isolate a pure product, the trisoxalatomanganate (III) could be stored at 20° in the absence of light with little decomposition, but the bisoxalatomanganate (III) was less stable, although it kept fairly well at 0°

Meyer and Schramm prepared several malonate complexes but it appears that these were impure in the majority of cases ¹⁸⁸ Bullock et al. ¹⁸⁹ have obtained and studied a large series of malonate complexes $M[MnL_2(H_2O)_2]$ (M = Cs, Tl, NH₄, Rb, NMe₄, NEt₄), $M[MnL_2(H_2O)_2]$.2H₂O (M = Na, K, C₅H₆N), $M[MnL_2(H_2O)_2]$ 3H₂O (M = Li), $M[MnL_2]$ (M = Na, K), $M_3[MnL_3]$ 3H₂O (M = K), $M_3[MnL_3]$ H₂O (M = K), and $[MnL_2(H_2O)_2]$ The effective magnetic moment for these complexes lay between 4 90 and 5.03 B M, and the visible spectra exhibited two absorption bands at 22,000 cm⁻¹ and 13,000 – 16,000 cm⁻¹. Cartledge and Nichols ¹⁹⁰ calculated the equilibrium constant for the reaction

$$[MnL_3]^{3-} + 2 H_2O \Rightarrow [MnL_2(H_2O)_2]^{-} + L^{2-}(L = C_3H_2O_4)$$

and obtained an average value of K = 0.057 at 0°

The solid EDTA complex of Mn^{III} was characterised by Yoshino et al ¹⁹¹ who found it was decomposed by light and heat, and was unstable at room temperature. They noted that in solution two forms existed depending on the pH of the solution, and suggested an equilibrium

$$[Mn(EDTA)(OH_2)]^- \Rightarrow [Mn(EDTA)(OH)]^{2-} + H^+$$

which leads to the conclusion that either EDTA is acting as a quinquedentate ligand, or that Mn^{III} is capable of forming seven-coordinate complexes. The idea of seven-coordination is reasonable in the light of the crystallographic establishment of the Mn^{II}—EDTA complex as seven-coordinate¹⁹²

The complexes [Mn(bipyO₂)₃](ClO₄)₃ 3H₂O, $\mu_{\rm eff} = 4.97$ B M.¹⁹³, and [Mn(terpyO₃)₂] (ClO₄)₃ (ref. 194) have been obtained. The latter contains terpyO₃ behaving as a tridentate ligand.

(vi) β-ketoenolates

Fackler¹⁹⁵ has reviewed the literature up to 1965. Fernelius and Bryant¹⁹⁶ have described the preparation of Mn(acac)₃, and the synthetic procedures have also been reviewed by Charles¹⁹⁷ Brown-black Mn(acac)₃, which is thermally less stable than the Cr, Ni, or Fe analogues, is most conveniently obtained by oxidising Mn^{II} with KMnO₄ in the presence of acetylacetone¹⁹⁸ The preparations of Mn^{III} complexes of dissobutyrylmethane¹⁹⁹, dipivaloylmethane¹⁹⁹, trifluoroacetylacetone²⁰⁰, 201, 1-phenyl-1,3-butane-dione²⁰¹, hexafluoroacetylacetone²⁰², and 3-cyano-2,4-pentanedione²⁰² have been described

The standard heat of formation of Mn(acac)₃ at 25° has been determined by reaction calorimetry²⁰³ to be -332.1 kcal mole⁻¹. Enthalpy changes at 25° for the hypothetical gaseous reactions

$$Mn^{3+}(g) + 3 C_5 H_7 O_2^-(g) = Mn(C_5 H_7 O_2)_3 (g)$$
 $\Delta H = -1475 \text{ kcal mole}^{-1}$
 $Mn(g) + 3 C_5 H_7 O_2 (g) = Mn(C_5 H_7 O_2)_3 (g)$ $\Delta H \approx -263 \text{ kcal mole}^{-1}$

have been derived and thus the heterolytic bond energy = 246 kcal. mole⁻¹, and the homolytic bond energy = 44 kcal mole⁻¹ for the Mn-O bond in Mn(acac)₃. The homolytic bond energy appears to provide the better basis for the comparison of M^{III}-O bond energies for the first transition series acetylacetonates²⁰³.

Despite the high-spin d^4 electronic configuration of Mn^{III} in Mn(acac)₃, the room-temperature X-ray crystal structure indicates an almost regular octahedral arrangement about the metal²⁰⁴ The distortion from D_3 symmetry is slight, but real, with Mn-O = 1 88 Å (deviation 0 03 Å) Forman and Orgel²⁰⁵ have suggested that, because of the unusual infrared spectrum²⁰⁶, Mn(acac)₃ is Jahn-Teller distorted Morosin and Brathovde²⁰⁴ suggest that, because there are two types of O-Mn-O bond angles (96.9° and 87.8°) in the complex, the bands being observed include some coupling to an Mn-O bond. On the other hand, the crystal structure of acetylacetonatobis(N-phenylaminotroponiminato)manganese (III) has revealed²⁰⁷ the first case of a distorted octahedral complex of high-spin Mn^{III}, where the distortion occurs because of different Mn-ligand bond lengths and not Mn-ligand bond angles. The Mn-O bond in the mixed-ligand complex, 1.96 Å, is significantly longer than in the acetylacetonate, this may be due to the presence of N donors in the complex The distortion takes the form of four short bonds and two long bonds, and Bartlett and Palenik²⁰⁷ have suggested an empirical rule for predicting the final configuration of octahedral Mn^{III} complexes

Barnum has carried out some Huckel LCAO-MO calculations on Mn(acac)₃ and discussed the metal-ligand π -bonding²⁰⁸. Piper and Carlin²⁰⁹ have studied the polarised visible spectrum of Al(acac)₃ isomorphously replaced in part with Mn³⁺ Electronic energy levels were assigned and interpretations of the spectral intensities and estimates of octahedral and trigonal field strengths were presented. The trigonal field parameter, K_1 is 500 cm⁻¹

When $Mn(acac)_3$ is subjected to various acids in water, salts of type $[Mn(acac)_2(H_2O)_2]^+$ are formed and endorsor with acetylacetone and ehloroform to acetylacetone and ehloroform.

(vii) Schiff base complexes

There are not many reported investigations of Schiff base complexes of Mn^{III} Early work by Pfeiffer et al ²¹² and Tsumaki²¹³ on hydroxy compounds of the type Mn(salen)(OH) and Mn(sal-NR)₂OH, has recently been reinvestigated^{214,216} Lewis et al ²¹⁶ obtained two modifications of Mn(salen) (OH), one of which showed antiferromagnetic behaviour, possibly arising from an oxygen-bridged structure of the type [Mn₂(salen)₂O] H₂O Derivatives of the type Mn(salen)X (X = halogen, acetate, etc.) have recently been studied and all display Curie—Weiss magnetic behaviour with small θ values²¹⁴. Mn(salen) is oxidised by intric oxide in ethanol to an Mn^{III} derivative²¹⁴, and it has been shown that three different complexes containing Mn^{III} and Mn^{IV} can be formed on oxidation under various conditions²¹⁵. The six-coordinate [Mn(TS₂)] I H₂O (TS₂ = bissalicylaidehydetriethylenetetramine) was prepared²¹⁷ by reacting bissalicylaidehyde-Mn^{II} with triethylenetetramine,

concentrated HCl, and KI, the magnetic moment is normal (5.05 B.M.). The complexes Mn(sal-NR)₃ and Mn(sal-NR)₂X (X = Cl, Br, OAc) show high-spin magnetic behaviour ($\mu_{\text{eff}} = 4.80-5.04 \text{ B M}$) with small deviations from the expected susceptibilities according to the Curie law²¹⁸. The Curie-Weiss behaviour of the Mn(salen)X (X = Br, I) has been explained in terms of very weak antiferromagnetic interactions²¹⁸.

(viii) Manganese (III) complexes with nitrogen-donor ligands

Persulphate oxidation of $[Mn(bipy)_3]^{2+}$ produces a dark green complex²¹⁹, characterised as $[Mn(bipy)_2O]_2(S_2O_8)_{1.5}$ 3H₂O by Turco and Nyholm²²⁰ who also obtained $[Mn(bipy)_2O]_2(ClO_4)_3$ 2H₂O by metathesis with NaClO₄ The effective magnetic moment is 1.7 B M indicating an average oxidation state of Mn_{3.5}, i.e. an Mn^{III}- and Mn^{IV}-containing molecule, for which the structure

$$[(b_1py)_2Mn^{III} < O > Mn^{IV} (b_1py)_2]^{3+}$$

was postulated

Goodwin and Sylva¹³⁵ found that o-phenanthroline and 2,2'-bipyridyl reacted with KMnO₄ in concentrated HCl, to produce pentachloromanganates (III), [bipyH₂] [MnCl₅] and [phenH₂] [MnCl₅] Solutions of lower acidity produced [Mn(bipy)(H₂O)Cl₃] (μ_{eff} = 4 9 B M) and [Mn(phen)(H₂O)Cl₃] (μ_{eff} = 4 9B M) [Mn(bipy)Cl₄] decomposes on heating to produce [Mn(bipy)Cl₃]₂, a chlorine-bridged dimer, with the rather low magnetic moment of 3 9 B M, which can be obtained directly, along with [Mn(phen)Cl₃]₂, from the product of the interaction of MnO₂ and dry HCl in CCl₄ with either of these bidentate ligands¹³⁵ The same workers¹³⁶ also prepared [Mn(phen)(H₂O)F₃] and [Mn(terpy)Cl₃] and studied the magnetic properties of a number of these complexes over the range ~ 100–300°K. The compounds [MnL(H₂O)X₃] (L = phen, bipy, X = F, Cl) are simple paramagnetics, but [MnLCl₃] are antiferromagnetic, in accordance with the dimeric, or possibly more highly polymenc, structures proposed. The tridentate ligand terpy forms [MnLCl₃] (L = terpy) which is a normal, monomeric octahedral complex¹³⁶

Funk and Kreis 221 reacted MnCl₃ with some simple amines and obtained mainly 1 3 adducts. The compounds were moisture-sensitive, but stable at room temperature, in contrast to the simple trichloride. With 2,2'-bipyridyl and o-phenanthroline, water-soluble complexes resulted in which the chloride could be substituted by other ions; similar addition compounds with ethers decomposed at room temperature. Reaction of MnCl₃ with acetylacetone caused substitution of one or two chlorides by the diketone. Among the complexes isolated were. MnLCl₃ (L = bipy, phen, py), MnL₂Cl₃ (L = en, dioxan), and MnL₃Cl₃ (L = NH₃, MeNH₂, EtNH₂, PrNH₂, py), MnCl₃ 4THF, and Mn(acac)Cl₂ and Mn(acac)₂Cl. Unfortunately, no measurements were carried out on this interesting series of complexes.

Ray and coworkers have prepared a number of interesting Mn^{III} complexes containing the biguanide ligand. The compound $[Mn_2(big)_4(OH)_2]H_2O$ becomes anhydrous on heating to 90° (ref. 222) Mn(acac)₃ reacts with biguanidine to yield²²³ $[Mn(acac)(big)(OH)(H_2O)]$, which reacts further with H_2O to produce $[Mn(acac)(big H)(H_2O)]OH$ The mixed complex $[Mn(big)_2$ (benzoylacac)] has also been produced²²⁴. These workers

have also prepared [Mn(pic)₃] ($\mu_{\rm eff}$ = 4.9 B.M.) and [Mn(oxin)₃] ($\mu_{\rm eff}$ = 4.8 B.M.) (pic = anion of picolinic acid, oxin = anion of β -hydroxy quinoline). The latter complex reacts with bromine²²⁵ to form [Mn(5,7-dibromoxin)₃]

Elvidge and Lever²²⁶ found that the oxidation of pyridine solutions of phthalocyanatomanganese (II) with molecular oxygen resulted in precipitation of short, opaque crystals which they formulated as Mn^{IV} Pc py.O (Pc = phthalocyanato). An X-ray structure of this compound²²⁷ showed it to be the more complicated phthalocyanatopyridinemanganese (III)-µ-oxophthalocyanatopyridinemanganese (III). This novel molecule consists of two approximately flat and parallel manganese phthalocyanine ring systems, joined by an oxygen atom which is midway between the manganese atoms. Each Mn also has a pyridine

Average bond distances and angles

(Reproduced by permission of the American Chemical Society)

molecule coordinated opposite to the oxygen atom. The crystals also contain molecules of pyridine of crystallisation

Manganese has been implicated in oxygen formation which occurs during green plant photosynthesis²²⁸ In fact, two Mn ions are found per photosynthetic unit in the chloroplast²²⁹ Several suggestions have been made as to the function of the Mn ion in the liberation of O₂ by photosystem II. In these schemes the Mn^{II}—Mn^{II}—Mn^{II} redox system is thought to take part in the electron-transfer chain from an electron donor to an electron acceptor²³⁰. Unfortunately, the metal atom binding sites and the ligands at these sites are not known Calvin²³¹ has suggested that a relevant model for the Mn in the chloroplast would be Mn complexes of porphyrin-like ligands. The photochemical behaviour of phthalocyanine²³², porphyrin²³³, and chlorophyll²³⁴ complexes of Mn have been extensively investigated. In a detailed study of the photochemistry of phthalocyanine-

manganese, it has been shown that the stable oxidation level of manganese may be shifted among the (II), (III), and (IV) oxidation states, depending on the nature of the fifth and sixth coordinating groups²³⁵ Furthermore, photochemical oxidation as well as photochemical reduction of the phthalocyaninemanganese (III) has been observed, and photochemical reduction of the manganese (IV) compound demonstrated. Mn^{III} etioporphyrins also are reduced to the (II)-oxidation state²³⁵ Some halide complexes of Mn^{III} protoporphyrin IX dimethyl ester have been prepared and studied²³⁶ A manganese (III) porphyrin was first prepared by Zaleski²³⁷, and this mesoporphyrin IX was later studied by Taylor who examined its redox properties²³⁸. Also, the acetatoetioporphyrin II²³², acetatohematoporphyrin IX dimethyl ester, and chlorohematoporphyrin IX dimethyl ester²³³, derivatives of Mn^{III} have been prepared. The reaction of Mn^{III} tetrapyridylporphines with various reducing agents has been studied²³⁹

(ix) Hexacyanomanganates (III)

 $K_3Mn(CN)_6$ is prepared²⁴¹ by air oxidation of $K_4Mn(CN)_6$, or^{83, 240} by the action of excess aqueous KCN on a manganese (III) complex such as MnPO₄, $K_2MnF_5.H_2O$ or Mn(CH₃COO)₃. The Li, Na, Rb, NH₄ salts are also known $K_3Mn(CN)_6$ forms red crystals, isomorphous with $K_3Fe(CN)_6$, a = 1359, b = 1062, c = 852 Å (ref 243) The magnetic moment is 3.50 BM, considerably higher than the "spin-only" value for a low spin d^4 compound (283 BM.). The Mn(CN)₆³⁻¹ ion is one of the few low-spin Mn^{III} compounds known (t_{2g}^4) .

The yellow, dilute aqueous solution hydrolyses slowly to MnO(OH). Exchange between Mn(CN)₆³⁻ and CN⁻ is very fast, first-order in Mn(CN)₆³⁻ and zero-order in CN⁻. The standard potential for the reaction²⁴²

$$Mn(CN)_6^{3-} + e^- = Mn(CN)_6^{4-}$$

ıs -0 24V

 $K_3[Mn(CN)_5OH]$ has been reported^{244,245}. The anion $[Mn(CN)_5NO]^{3-}$, although once regarded as an Mn^{HI} compound, exhibits an N=O stretching frequency of 1730 cm⁻¹ which indicates the presence of NO^+ and hence the oxidation state of the manganese is probably +1 (ref. 246)

Red-brown crystals of 1.2 [K₄Mn(CN)₅] .0.7 [K₃Mn(CN)₆] H₂O, a mixed Mn^{II}—Mn^{III} cyanocomplex is formed²⁴⁷ by reaction between K₄Mn(CN)₆ and K₃Mn(CN)₆ under carefully controlled conditions. It has a magnetic moment of 1.04 B M

(x) Other Mn^{III} complexes

Nyholm and Sutton²⁴⁸ were unable to oxidise [Mn(DAS)₂X₂] (X = Cl, Br, I) to Mn^{III}, are found that DAS rapidly reduced Mn(OAc)₃ or Mn(acac)₃ to Mn^{II} under anhydrous conditions. In the presence of small amounts of water, the red-purple [Mn(DAS)Cl₂ H₂O] (ClO₄) was formed in low yield. The reaction can be represented

DAS + Mn(OAc)₃ + HClO₄ + acetic anhydride + H₂O
$$\xrightarrow{\text{dry HCl gas}}$$
 [Mn(DAS)Cl₂.H₂O](ClO₄)

The complex has $\mu_{\text{eff}} = 5.13$ B M. A green complex, probably the bromo analogue was isolated using HBr in place of HCl in the above reaction.

Coord Chem Rev ,7 (1972) 353-384

(xi) Manganese (III) in solution

A detailed review² is available, in which the generation of Mn^{III} in solution, its estimation, and the equilibria and kinetics of a large number of reactions are discussed.

Manganese (III) is a strongly oxidising species and is unstable with respect to disproportionation. Solutions of Mn^{III} in perchlorate media is generally produce solid hydrated. MnO₂ on standing, instability increasing with increasing [Mn^{III}] and decreasing acidity^{249,250}.

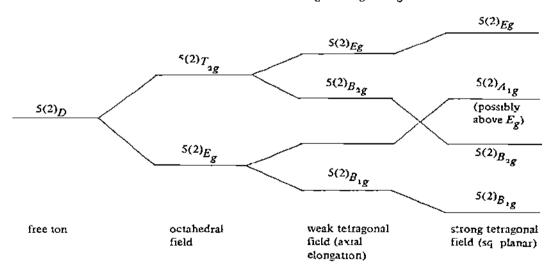
$$2 \text{ Mn}^{\text{III}} \rightarrow \text{Mn}^{\text{IV}} + \text{Mn}^{\text{II}}$$
 $\text{Mn}^{\text{IV}} + 2\text{H}_2\text{O} \rightarrow \text{MnO}_2 + 4 \text{ H}^*$

Complexation of Mn^{III} with anions usually results in a reduction of the electrode potential of the Mn^{III}—Mn^{II} couple; for example, the electrode potential in the presence of EDTA is ca -0.82V (ref. 251), while that in perchlorate media is ca -1.58V. Moreover, the presence of a number of complexed Mn^{III} species complicates the interpretation of kinetic data. For example, Waters and Littler²⁵² have concluded that little information can be obtained from a study of the pH-dependence of reactions of manganese (III) pyrophosphate with organic reductants because of a lack of knowledge of oxidising species present in solution. An interesting observation regarding the magnitude of the effects of complexation on the oxidising power of Mn^{III} is that hydrogen peroxide is found as a product of the oxidation of oxalate by Mn^{III}CyDTA at low pH²⁵³

In an investigation of the analytical applications of the EDTA complex of Mn^{III} , Pribil et al 254,255 found that the complex slowly decomposed. Yoshino et al 256 isolated the complex and found decomposition was enhanced by heat, light, and traces of Mn^{II} ion. Tanaka et al 257 have measured the standard oxidation—reduction potential of the Mn^{III} EDTA— Mn^{II} EDTA complex. Hamm isolated the complexes of Mn^{III} with EDTA, trans-1,2-diaminocyclohexane-tetraacetic acid (CyDTA), and hydroxyethylethylenediamine-tetraacetic acid (HEDTA), and established the rates of decomposition in acidic solution. The standard potentials for the reaction $Mn^{III}Y + e^- \rightleftharpoons Mn^{II}Y$ were determined, and all three complexes were equally good oxidising agents. Formation constants were calculated 251 The products of the decomposition of the Mn^{III} complexes of CyDTA and EDTA were Mn^{II} complexes with oxidation of some of the ligand to formaldehyde, carbon dioxide, and the triacetate ligand 258 . The oxidation of oxalate with Mn^{III} CyDTA has been studied 253 .

Important information concerning the stabilities of several Mn^{III} complexes has been obtained by a study of the Mn^{III}-catalysed oxidation of oxalic acid by chlorine²⁵⁹ and bromine²⁶⁰ The rate-determining step in this reaction in the first-order decomposition of the monoxalate complex, viz

$$MnC_2O_4^+ \xrightarrow{K_1} Mn^{2+} + C_2O_4^-$$


Studies of the oxalate complexes of Mn^{III} showed^{259,261} that the decomposition was dependent on the concentrations of oxalate and H^t ions. The decomposition of the tartrate²⁶² and glycolate²⁶³ complexes was found to be first-order in the complex concentration in the presence of excess complexing agent, and to be inhibited by the addition of Mn^{II} ion.

Wells and coworkers have carried out spectrophotometric investigations of alcoholo-²⁶⁴ and aquo-manganese (III)²⁶⁵ species in perchlorate media. The reactions of aquomanganese (III) ions with bromide ion²⁶⁶, hydrogen peroxide^{267,268} hydrazoic acid^{269,270} and hydroxylamine²⁷¹ in perchlorate media have been studied. The species MnF(CH)⁴_{aq} has been postulated by Davies and Kustin²⁷²

Oxidation of organic compounds by Mn^{III} complexes in aqueous solution has been extensively studied²⁵², e.g. the oxidation of toluene by $Mn(acetate)_3$ in refluxing acetic acid yields benzyl acetate, o-methylbenzylacetate, and tolylacetic acid²⁷³. Most of these results have been successfully interpreted in terms of inner-sphere one-electron-transfer processes²⁷⁴ The non-aqueous chemistry has been less extensively explored, and the oxidations reported have been interpreted as resulting from inner-²⁷⁵ or outer-sphere²⁷⁶ one-electron-transfer steps Manganese (III) acetate oxidises olefins to γ -lactones²⁷⁷⁻²⁸⁰

SPECTRA OF MANGANESE (III) COMPOUNDS

The electronic spectra of high-spin Mn^{III} compounds are of special interest because the ground electronic state anticipated in octahedral complex, 5E_g , is subject to strong Jahn—Teller forces^{265,281} In general, three bands are observed in the visible region, and satisfactory assignment has been made in terms of D_{4h} symmetry^{171,282} The two highest energy bands have been assigned to the transitions ${}^5B_{1g} \rightarrow {}^5B_{2g} \rightarrow {}^5E_g$

However, despite intensive work on the preparation and optical properties of Mn^{III} complexes^{168,223,250,282-286}, difficulties have arisen in assignment of the band in the near-infrared region. The relationship of the presence of this band to the structure of the complexes has not been clarified. The band (which appears between 8 and 13kK has been variously assigned to a spin-forbidden transition^{209,213} from the ground state to ${}^3T_{1g}$ (in O_h symmetry), as a low-energy charge-transfer transition^{284,286} as a transition from the 5E_g ground state to the trigonally split ${}^5T_{2g}$ excited state²⁸⁷, and as a spin-allowed

transition between components of the ${}^{5}E_{\sigma}$ (in O_{h} symmetry) ground state split by Jahn-Teller forces^{265,288}. Davis et al. have convincingly shown that this band can be assigned to the ${}^5B_{1g} \rightarrow {}^5A_{1g}$ transition in D_{4h} symmetry, and they formulated an interesting argument for this assignment¹⁷¹. The reflectance spectra of K₃MnF₆ (ref. 285) and MnCl₆³⁻ (ref. 289) show the presence of a low-energy band at 9,000 cm⁻¹ and 8,300 cm⁻¹ respectively The single-crystal spectrum of (NH₄)₂MnF₅ shows a similar low-energy band at 12,750 cm⁻¹ which can be assigned to the ${}^5B_{1g} \rightarrow {}^5A_{1g}$ transition on the basis of polarisation of the bands 1672 All other halide complexes for which there are data also show a low-energy band, e.g. Na₂MnF₅ (12,500 cm⁻¹) (ref. 290), K₂MnCl₅ (12,000 cm⁻¹) (ref 289), K_2MnF_5 (12,100 cm⁻¹) (ref 289), $[(C_2H_5)_4N]_2MnCl_5$ (11,300 cm⁻¹) (refs. 135, 289), $[(bipy)H_2][MnCl_5]$ (11,500 cm⁻¹) (ref. 135), $[(phen)H_2][MnCl_5]$ (12,500 cm⁻¹) (ref 135) and MnF₃ (12,000 cm⁻¹) (ref 283) In the pentahalide species, the atom generally attains six-coordination by sharing axial ligands as in (NH₄)₂MnF₅ (refs 167, 291) In MnF₃, all fluorines are shared to complete the distorted octahedron about each Mn^{HI} ion. The shift in position of the low-energy band in going from the hexahaldes to the pentahalides and MnF3 is best understood on the basis of the Jahn-Teller effect. In the hexahalides none of the ligand ions is shared, hence dynamic motion (minima exchange) of the tetragonally displaced ligands about the manganese may occur. In the pentahalides and in MnF₃, where ligands are shared, the minima exchange should be decreased as stabihsation of the molecule in one tetragonally distorted form occurs. A shift in the low-energy $(^5B_{1g} \rightarrow ^5A_{1g})$ band to higher wave-numbers consistent with a statically distorted structure follows A similar argument 283 was presented for aqueous MnF2+

(xui) Low-spin compounds

The spectra of $Mn(CN)_6^{3-}$ and of $Mn(CN)_5(OH)^{3-}$ have been discussed by Chawla and Frank²⁹². Earlier investigations^{293,294} of the spectrum of the $Mn(CN)_6^{3-}$ ion in aqueous solution are of doubtful value, since it has been shown that hydrolysis in such solutions is not negligible, as had been earlier assumed^{179,265}

The Mn(CN)₆³⁻ ion²⁹² shows charge-transfer absorptions at 43,500, 21,800 cm⁻¹, with a spin-allowed transition at 27,000 cm⁻¹ ($^3T_{1g} \rightarrow ^3E_g$), and spin-forbidden transitions at 12,000 cm⁻¹ ($^3T_{1g} \rightarrow ^5E_g$), 12,500 cm⁻¹ ($^3T_{1g} \rightarrow ^1T_{2g}$), 13,500 cm⁻¹, ($^3T_{1g} \rightarrow ^1E_g$), and 24,500 cm⁻¹ ($^3T_{1g} \rightarrow ^1A_{1g}$)

REFERENCES

- 1 NV Sidgwick, Cnemical Elements and Their Compounds, Oxford University Press, London, 1950. p 1262
- 2 G Davies, Coord Chem Rev., 4 (1969) 199
- 3 T A Zordan and L G Hepler, Chem Rev., 68 (1968) 739
- 4 A Engelbrecht and A V Grosse, J Amer Chem. Soc 76 (1954) 2042.
- 5 T S Briggs, J Inorg Nucl. Chem., 30 (1968) 2866
- 6 K. Wiechert, Z Anorg Chem, 261 (1950) 310.
- 7 D Michel and A. Doiwa, Naturwissenschaften, 53 (1966) 129
- 8 E.E. Aynsley, J. Chem. Soc., (1958) 2425
- 9 A Javan and A Engelbrecht, Phys Rev., 96 (1954) 649

- 10 P J Aymonno, H. Schulze and A Muller, Z Naturforsch, B 24 (1969) 1508
- 11 O. Glemser and H. Schroder, Z. Anorg. Chem., 271 (1953) 293
- 12 A. Simon and F. Feher, Z Elektrochem, 38 (1932) 137
- 13 J M Loven, Ber Deut Chem Ges., 25 (1892) ref. 620
- 14 P Dubois, Compt Rend , 200 (1935) 1107.
- 15 N A Frigerio, J Amer Chem. Soc., 91 (1969) 6200
- 16 G Brauer, Handbook of Preparative Inorganic Chemistry, Vol. 2, Academic Press, New York, 1963, p. 1462.
- 17 A A Zinov'ev and K V Titova, Russ J Inorg Chem., 8 (1962) 823
- 18 A Muller and B Krebs, Z Naturforsch B 21 (1966) 163
- 19 E J Baran and P J Aymonino, Monatsh Chem 99 (1968) 606
- 20 E Moles and M. Crespi, Anal Soc Espan Fis Quim, 21 (1923) 305.
- 21 E. Moles and M. Crespi, Anal. Soc. Espan. Fis. Outm., 20 (1922) 692.
- 22 A Ferrari, A Braibanti, G Bigliardi and A M Manotti Lanfredi, Acta Cryst , 21 (1966) 681
- 23 E G Prout and P J Herley, J Phys Chem., 66 (1962) 961
- 24 P.D. Komissarova and S.A. Krestovnikova, Chem. Abstr., 69 (1968) 56590
- 25 WP Doyle and I Kirkpatrick, Spectrochim Acta, 24A (1968) 1495
- 26 GJ Palenik, Inorg Chem, 6 (1967) 503
- 27 H Peters, K.H Radeke and L. Till, Z Anorg Chem., 346 (1966) I
- 28 F H Herbstein, G Ron and A Weissman, J Chem Soc A, (1971) 1821
- 29 P.J. Hendra, Spectrochim Acta, 24A (1968) 125
- 30 WP Griffith, J Chem Soc A (1966) 1467
- 31 A Muller and B Krebs, Naturwissenschaften, 52 (1965) 492
- 32 E J Baran and P J Aymonino, Z Anorg Chem., 354 (1967) 85
- 33 J A Ketelaar, Z Krist , 92 (1935) 155
- 34 A Hardy, C Pickarski and P Hagen-Muller, Compt. Rend. 249 (1959) 2579
- 35 K Savari, Z Krist , 99 (1938) 9
- 36 J Royer, J Inorg Nucl Chem., 17 (1961) 159
- 37 H C Mishra and M C R. Symons, J Chem Soc. (1962) 4411
- 38 B Franke, J Prakt Chem 36 (1887) 31
- 39 T E Thorpe and Γ J Hambly, J Chem Soc., 53 (1888) 175
- 40 Γ.R Lankshear, Z Anorg Chem, 82 (1913) 97
- 41 G M Damanskaya and R I Agladze, Issled v Obl Elektrokhun i Radiats, Khun, Akad Nauk Gruz SSR, (1965) 156
- 42 R Scholder and H Waterstradt, Z Anorg Chem., 277 (1954) 172
- 43 C Rocchiccioli, Compt. Rend. C, 256 (1963) 1707
- 44 G Duquenoy, Compt Rend C, 268 (1969) 1828.
- 45 J W Mellor, A Comprehensive Treatise of Inorganic and Theoretical Chemistry, Vol. XII, Longmans, London, 1932
- 46 W. Klemm and K. A. Jensen, Z. Anorg. Chem., 237 (1938) 47
- 47 G J Falentk, Inorg. Chem., 6 (1967) 507
- 48 H Lux, Z Naturforsch 1 (1946) 281
- 49 B Jezowska-Trzebiatowska, J Nawojska and M Wrouska, Roczniki Chem., 25 (1951) 405
- 50 R Scholder, D Fisher and H Waterstradt, Z Anorg Chem., 277 (1954) 234
- 51 R Scholder and U Protzer, Z Anorg Chem 369 (1969) 313.
- 52 H Lux, E Brodkorb, R Mahr and E Oeser, Z Anorg Chem., 337 (1965) 200
- 53 W. Klemm, Proc. Intern. Symp Reactivity of Solids Gottenberg 1952, Pt. 1, 1954, p. 173
- 54 R Scholder, Angew Chem., 70 (1958) 583
- 55 E J Baran and P J Aymonino, Monatsh Chem 100 (1969) 1674
- 56 L.H. Brixner and J.F. Weiher, Inorg. Chem., 7 (1968) 1474
- 57 W Klemm, C Brendel and G. Wehrmeyer, Chem Ber, 93 (1960) 1506
- 58 M Wolfsberg and L Helmholtz, J. Chem. Phys., 20 (1952) 837
- 59 C J Ballhausen and A.D Liehr, J Mol Spectry, 2 (1958) 342
- 60 A Carrington and M.C.R Symons, J Chem Soc., (1960) 88

- 61 D.S. Schonland, Proc. Roy. Soc. (London), Ser. A, 254 (1960) 111
- 62 A Carrington and D S Schonland, Mol Phys., 3 (1960) 331
- 63 A Carrington and C K Jorgensen, Mol Phys., 4 (1961) 395
- 64 RF Fenske and C Sweeney, Inorg Chem, 3 (1964) 1105
- 65 A Viste and H B Grey, Inorg Chem, 3 (1964) 1113.
- 66 L. Oleari, G. De Michelis and L. Di Sipto, Mol. Phys., 10 (1965) 111
- 67 L. Oleari, G. De Michelis, L. Di Sipio and E. Tondello, Coord Chem. Revs., 2 (1967) 53
- 68 JD Kingsley, JS Prener and B Segall, Phys Rev 137A, (1965) 189
- 69 L E Orgel, Mol Phys., 7 (1963) 397
- 70 J Kubris and J H Krepelka, Collection Czech Chem Commun 7 (1935) 105
- 71 A.G. Sharpe and A.A. Woolf, J. Chem. Soc., (1951) 798
- 72 HW Roesky, O Glemser and KH Hellberg, Chem Ber., 98 (1965) 2046
- 73 R Hoppe, W Dahne and W Klemm, Ann Chem., 658 (1962) I
- 74 R Hoppe, W Dahne and W Liebe, Z Anorg Chem., 307 (1961) 276
- 75 B Co., J Chem Soc., (1954) 3251
- 76 DH Brown, KR. Dixon, RWD Kemmit and DWA Sharp, J Chem Soc., (1965) 1559
- 77 H Bode and W Wendt, Z Anorg Chem 269 (1952) 165
- 78 R Hoppe, J Inorg Nucl Chem., 8 (1958) 435
- 79 R Hoppe and K Blinne, Z Anorg Chem., 291 (1957) 269
- 80 R Hoppe, Rec Trav Chim, 75 (1956) 569
- 81 R D Peacock and D W A Sharp, J Chem Soc., (1959) 2762
- 82 JT Grey, J Amer Chem Soc , 68 (1946) 605
- 83 W.G. Palmer, Experimental Inorganic Chemistry Cambridge University Press, London, 1962
- 84 H Bode, H Jensen and F Bandte, Angew Chem 65 (1953) 304
- 85 A G Sharpe and B Cox, J Chem Soc , (1951) 798
- 86 P Bouy, Ann Chim (Paris), 4 (1959) 853
- 87 R Hoppe and G Stebert, Z Anorg Chem., 376 (1970) 261
- 88 PC Moews, Jr , Inorg Chem 5 (1966) 5
- 89 R D Peacock, J Chem Soc., (1953) 3617
- 90 R F Weinland and P Dinklacher, Z Anorg Chem 60 (1908) 173
- 91 H D Hart and M Fleischer, Z Anorg Chem 357 (1968) 113
- 92 N Elliot, J Chem Phys., 46 (1967) 1006
- 93 D M Adams and D M Morris, J Chem Soc A, (1968) 694
- 94 G.C. Allen, G.A.M. El-Sharkarwy and K.D. Warren, Inorg. Nucl. Chem. Letters, 5 (1969) 725
- 95 DS Novotny and GD Sturgeon, Inorg Nucl Chem Letters 6 (1970) 455
- 96 CK Jorgensen, Acta Chem Scand , 12 (1958) 1539
- 97 B Jezowska-Trzebiatowska, S Wajda, M Bałuka, L. Nathaniec and W Wojcieckowski, Inorg Calm. Acta, 1 (1967) 205
- 97a L B Asprey, M J Reisfeld and N A Matwiyoff, J Mol Spectry, 34 (1970) 361
- 98 TE Moore, M Ellis and PW Selwood, J Amer Chem Soc., 72 (1950) 856.
- 99 A D Wadsley and A Walkley, Rev Pure Appl Chem, 1 (1951) 203
- 100 W Festknecht and A Marti, Helv Chim Acta, 28 (1945) 129
- 101 K H Maxwell and H R Thusk, J Chem Soc , (1955) 4054
- 102 G Gattow and O Glemser, Z Anorg Chem, 309 (1961) 121
- 103 O Glemser, G Gattow and M Meissek, Z Anorg Chem, 309 (1961) i
- 104 O Glemser and G Gattow, Z Anorg Chem, 309 (1961) 20
- 105 S.S. Bhatnager, A. Cameron, E.H. Habard, A. King, P.L. Kapur and B. Prakash, J. Chem. Soc., (1939) 1433
- 106 A Schmier and G Sterr, Z Anorg Chem., 346 (1966) 181
- 107 A. Schmier and G. Sterr, Z. Anorg. Chem., 368 (1969) 265
- 108 R Giovanoli, E Stahli and W Feitknecht, Helv Chim Acta, 53 (1970) 209
- 109 R Giovanoli, E Stahli and W Feitknecht, Helv Chini. Acta 53 (1970) 453.
- 110 R Giovanoli, W Feitknecht and F. Fischer, Helv Chim Acta, 54 (1970) 1112

- 11 NN Greenwood, Ionic Crystals Lattice Defects, and Nonstoichiometry Butterworths, London, (1968) p. 101.
- 12 HF McMurdie and E. Golovato, J Res Natl Bur Std., 41 (1948) 589
- 13 HR Oswald, W Feitknecht and MJ Wampetich, Nature, 207 (1965) 72
- 14 HR Oswald and MJ Wampetich, Helv Chim Acta, 70 (1967) 2023
- 15 M Mansmann, 2 Anorg Chem., 339 (1965) 52
- 16 F H Delano, Ind Eng Chem , 42 (1950) 535
- 17 R Scholder, Z Anorg Chem, 260 (1949) 41, 231
- 18 N I Kharabadze, Elektrokhum Margantsa Akad Nauk Gruz SSR, 2 (1963) 255.
- 19 II Remy, Treatise on Inorganic Chemistry, Vol 2, Elsevier, Amsterdam, 1956
- 20 I Reimer and M.W Lister, Can J. Chem., 39 (1961) 2431
- 21 W B Price, J Amer Chem. Soc. 30 (1903) 182
- 22 MW Lister and Y Yoshino, Can J Chem., 38 (1960) 1291
- 23 Y Yoshino, T Takeuchi and H Kinoshita, Nippon Kagaku Zasshi, 86 (1965) 978
- 24 MW Lister and Y Yoshino, Can J Chem., 40 (1962) 1490
- 25 MW Lister, Can J Chem., 39 (1961) 2330
- 26 I D Brown, Can J Chem., 47 (1969) 3779
- 27 L Jensovsky, Omagiu Raluca Ripon (1966) 293
- 28 M A Berg, Compt Rend, 128 (1899) 673
- 29 W E Dasent and T C Waddington, J Chem Soc (1960) 2429
- 30 GH Cartledge and WP Ericks, J Amer Chem Soc 58 (1936) 2069
- 31 Z Marczenko, Bull Soc Chim, (1964) 939
- 32 V. Auger and A. Yakimach, Compt. Rend., 187 (1928) 603
- 33 P Schottlander, Ann Chem , 155 (1870) 230
- 34 M M Ray and P Ray, J Ind Chem Soc., 35 (1958) 595
- 35 H.A. Goodwin and R N Sylva, Australian J Chem., 18 (1965) 1743
- 36 H A Goodwin and R N Sylva, Australian J Chem., 20 (1967) 629
- 37 W Levason and C A McAuliffe, unpublished work
- 38 J R Fowler and J Kleinberg, Inorg Chem., 9 (1970) 1005
- 39 A Yakımach, Compt Rend., 190 (1930) 681
- 40 N Goldenberg, Trans Faraday Soc., 37 (1940) 847
- 41 JT Waugh, Acta Cryst, 7 (1954) 438
- 42 BW Dale, JM Buckley and MT Pope, J. Chem Soc A. (1969) 301
- 43 CM Flynn and GD Stucky, Inorg Chem, 8 (1969) 333
- 44 C M Flynn and G D. Stucky, Inorg Chem., 9 (1970) 2009
- 45 CM Flynn and GD Stucky, J Amer Chem Soc, 92 (1970) 85
- 46 G Brauer, Handbook of Preparative Inorganic Chemistry, Vol. 1, Academic Press, New York, 1963, p. 263
- 47 R D Fowler, H C Anderson, J M Hamilton, W B Burford, A Spadette, S B Bitterlick and I Litant, Ind Eng Chem., 39 (1947) 343
- 48 HJ Emeleus and G L Hunt, J Chem Soc., (1964) 396
- 49 E.E. Aynsley, R.D. Peacock and P.L. Robinson, J. Chem. Soc., (1950) 1622
- 50 M A Hepworth and K H Jack, Acta Cryst , 10 (1957) 345
- 51 J H Simons, Fluorine Chemistry, Vol 1, Academic Press, New York, 1950
- 52 B Cox and A G Sharpe, J Chem Soc , (1954) 1798
- 53 HV Wartenberg, Z Anorg Chem, 244 (1940) 337
- 54 RA Rausch, RA Davies and DW Osborne, J Org Chem., 28 (1963) 494
- 55 M A Hepworth, K H Jack and R S Nyholm, Nature, 179 (1957) 211
- 56 Z F Zmbov and J L Margrave, J Inorg Nucl Chem, 29 (1967) 673
- 57 R M Bozorth and J W Nielson, Phys Rev., 110 (1958) 879
- 58 J Aubert and G H. Cady, Inorg Chem 9 (1970) 2600
- 59 A Chretien and G Varga, Bull Soc Chim., 3 (1936) 2385
- 50 R D Peacock, J Chem Soc., (1957) 4684

- 161 S Schneider and R Hoppe, Z Anorg Chem 376 (1970) 268
- 162 K Knox, Acta Cryst 16 (1963) A45
- 163 K Wieghardt and H Siebert, Z Anorg Chem., 381 (1971) 12
- 164 JG Ryss and BS Vitukhnovskaya, Chem Abstr., 48 (1954) 13506.
- 165 R S Nyholm and A G Sharpe, J Chem Soc , (1952) 3579
- 166 J.G. Ryss and B.S. Vitukhnovskaya, Z. Neorg. Khim., 3 (1958) 1185
- 167 S Enori, M Inoue, M Kishita and M Kubo, Inorg Chem. 9 (1969) 1385
- 167aR Dingle, Inorg Chem., 4 (1965) 1287
- 168 W E Hatfield, R C Fay, C E Pfluger and T S Piper, J Amer. Chem Soc., 85 (1963) 265
- 169 W Levason, CA McAuliffe and SG Murray, submitted for publication
- 170 N S Gill, Chem Ind (London), (1961) 989
- 171 TS Davis, JP Fackler, Jr and MJ Weeks, Inorg Chem, 7 (1968) 1994
- 172 C E Rice, J Chem Soc., 73 (1898) 260
- 173 I Bernal, N Elliot and R A Lulancette in M Cais (Ed.), Proc XI Intern Conf Coord Chem. Haifa, Israel, 1968, Elsevier, Amsterdam, 1968, p. 518
- 174 L. Pauling, Z. Krist., 75 (1930) 128
- 175 P Dubois, Ann Chim., 5 (1936) 401
- 176 A F Wells, Structural Inorganic Chemistry, Oxford University Press, London, 3rd edn., 1962
- 177 W Feitknecht, P Brunner and H R Oswald, Z Anorg Chem., 316 (1962) 154
- 178 R Scholder and H Kyri, Z Anorg Chem., 270 (1952) 56
- 179 R Hoppe, Z Anorg Chem., 368 (1969) 262
- 180 L Domage, Bull Soc Chim France 4 (1937) 594
- 181 L. Domage, Bull Soc Chim France, 6 (1939) 1452
- 182 S V Gorbatschev and E E Schpitalski, J Gen Chem. Russ , 10 (1940) 1961
- 183 O T Christensen, Z Anorg Chent., 27 (1901) 329
- 184 H Bommer, Z Anorg Chem., 246 (1941) 275
- 185 J Meyer and J Marck, Z Anorg Chem., 133 (1924) 325
- 186 OT Christensen, Z Anorg Chem., 27 (1901) 325
- 187 G H Cartledge and W P Ericks, J Ainer. Chem Soc 58 (1936) 2061
- 188 J Meyer and W Schramm, Z Anorg Chem. 123 (1922) 56
- 189 JI Bullock, M M Patel and J E Salmon, J Inorg Nucl Chem, 31 (1969) 415
- 190 G H Cartledge and P.M Nichols, J Amer Chem Soc., 62 (1940) 3057
- 191 Y Yoshino, A. Ouchi, T Tsunoda and M Kojima, Can J Chem. 40 (1962) 775
- 192 S Richards, B Peterson, J V Silverton and J L Hoard, Inorg Chem., 3 (1964) 27
- 193 R S Nyholm and A Turco, J Chem Soc. (1962) 1121
- 194 W M. Reiff and W.A. Baket, Inorg. Chem., 9 (1970) 570
- 195 JP Fackler, Jr , Progr Inorg Chem., 7 (1966) 361.
- 196 WC Fernelius and BE Bryant, Inorg Syn. 6 (1957) 105
- 197 RG Charles, Inorg Syn, 6 (1960) 164
- 198 G H Cartledge, J Amer Chem Soc 73 (1951) 4416, US Pat 2,556,316
- 199 GS Hammond, W.G Bordmin and GA Guter, J Amer Chem Soc, 81 (1959) 4682
- 200 A E Martell and M Calvin, Chemistry of the Metal Chelate Compounds, Prentice-Hall, New York, 1952
- 201 R C. Fay and T S Piper, J Amer Chem Soc, 84 (1952) 2303, 85 (1964) 500
- 202 TS Davis, JP Fackler, Jr and MJ Weeks, Inorg Chem., 7 (1968) 1994
- 203 JO Hill and R J Irving, J Chem Soc A, (1968) 3116
- 204 B Morosin and J R Brathovde, Acta Cryst, 17 (1964) 705
- 205 A Forman and L.E. Orgel, Mol Phys 2 (1959) 362
- 206 K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1963, 1st edn, p. 216
- 207 M Bartlett and G J Palenik, Chem Commun, (1970) 416
- 208 D.W Barnum, J Inorg Nucl Chem, 21 (1961) 221, 22 (1961) 183
- 209 T S Piper and R L, Carlin, Inorg Chem, 2 (1963) 260

- 210 G H Cartledge, J Amer Chem. Soc 74 (1952) 6015.
- 211 T Shigematsu and M. Tabustin, J. Chem Soc. Japan Pure Chem Sect., 83 (1962) 814
- 212 P Pfeiffer, E Breith, E Lubbe and T Tsumaki, Ann Chem., 503 (1933) 84.
- 213 T Tsumaki, Bull Chem Soc Japan, 13 (1938) 579
- 214 A Earnshaw, E A. King and L F. Larkworthy, J Chem Soc A, (1968) 1048.
- 215 T Yanno, T Matsuchita, I Masuda and K. Shinra, Chem Commun., (1970) 1317.
- 216 J Lewis, FE Mabbs and H Weigold, J Chem Soc. A, (1968) 1699,
- 217 B Das Sarma, R Ray, R E Sievers and J C Bailer, Jr. J Amer Chem Soc., 86 (1964) 14
- 218 A Van den Bergen, K S Murray, M J O'Connor and B O West, Australian J Chem, 22 (1969) 39.
- 219 F.H. Burstall and R.S. Nyholm, J. Chem. Soc., (1952) 3570
- 220 A Turco and R S Nyholm, Chem Ind (London), (1960) 74
- 221 H Funk and H Kreis, Z Anorg Chem., 349 (1967) 45
- 222 M.M. Ray and P. Ray, J. Ind. Chem. Soc., 35 (1955) 595
- 223 MM Ray, IN Adhya, D. Biswes and SN Podder, Australian J Chem., 19 (1966) 881
- 224 M M Ray, J N Adhya, D Biswes and S N Podder, Australian J Chem., 21 (1968) 801
- 225 MM Ray, J N Adhya, D Biswes and S N Podder, Australian J Chem., 19 (1966) 1737
- 226 J A Elvidge and A B P Lever, Proc Chem Soc., (1959) 195
- 227 L H Vogt, Jr. A Zalkin and D H Templeton, Inorg Chem. 6 (1967) 1725, Science, 151 (1966) 569
- 228 E Kessler, W Arther and I E Brugger, Arch Biochem Biophys 71 (1957) 326
- 229 R D Park and N G Pon, J Mol Bul, 6 (1963) 105
- 230 A D Swensen and L P Vernon, Biochim Biophys Acta, 102 (1965) 349.
- 231 M Calvin, Rev Pure Appl Chem., 15 (1965) 1
- 232 A Yamamoto, L.K. Phillips and M. Caivin, Inorg. Chem., 7 (1968) 847
- 233 PA Loach and M Calvin, Biochemistry, 2 (1963) 361
- 234 P.A Loach and M Calvin, Nature, 202 (1964) 343
- 235 G Engelsma, A Yamamoto, E Markham and M Calvin, J Phys Chem. 66 (1962) 2517
- 236 J L Boucher, J Amer Chem Soc., 90 (1968) 6640
- 237 J Zalesku, J Physiol Chem., 43 (1904) 11
- 238 JF Taylor, J Biol Chem., 135 (1940) 569
- 239 P Hambright and E.B Fleischer, Inorg Chem., 4 (1965) 912
- 240 J.A. Lowther and W.C. Fernelius, Inorg. Syn., 2 (1946) 213
- 241 J Meyer, Z Anorg Chem, 81 (1913) 385
- 242 W D Treadwell and W E Raths, Helv Chim Acta, 35 (1952) 2275
- 243 C Gotfried and J G Nagelschmitt, Z Knst., 73 (1930) 357
- 244 H.K. Saha, Chem. Abstr., 57 (1962) 1833
- 245 [D Chawla and M J Frank, J Inorg Nucl Chem., 32 (1970) 555.
- 246 B M Chadwick and A G Sharpe, Advan Inorg Chem Radiochem, 8 (1966) 83.
- 247 A E. McCarthy, J Chem Soc A, (1970) 1379
- 248 R S Nyholm and G J Sutton, J Chem Soc, (1958) 564
- 249 DR Rosseinsky, J Chem Soc, (1963) 1181
- 250 H Diebler and N Sutin, J Phys Chem., 68 (1964) 174
- 251 RE Hamm and M A Suwyn, Inorg Chem., 6 (1967) 139
- 252 W A Waters and J S Littler, in K B Wiberg (ed.) Oxidation in Organic Chemistry, Academic Press, New York, 1965.
- 253 M A Suwyn and R E Hamm, Inorg Chem., 6 (1967) 142
- 254 R Pribil and J Horacek, Collection Czech Chem Commun., 14 (1949) 454
- 255 R Pribil and E Hornychova, Collection Czech. Chem Commun., 15 (1950) 456
- 256 Y Yoshino, Y Tsumodu and A Quski, Bull Chem. Soc Japan, 34 (1961) 1194
- 257 N Tanaka, T Shirakashi and H Ogino, Bull Chem Soc Japan, 38 (1965) 1515
- 258 K.A. Schroder and R.E. Hamm, Inorg. Chem., 3 (1964) 391
- 259 H Taube, J Amer Chem Soc , 70 (1948) 1216
- 260 H Taube, J Amer Chem Soc., 70 (1948) 3928

- 261 FR Duke, J Amer Chem Soc, 69 (1947) 2885
- 262 TN Stivastava, Z Phys Chem 209 (1958) 22
- 263 T N Srivastava, Z Phys Chem , 211 (1959) 251
- 264 CF Wells and C Barnes, J Chem Soc A, (1968) 1626
- 265 CF Wells and G Davies, J Chem Soc A, (1967) 1858
- 266 CF Wells and D Mays, J Chem Soc A, (1968) 577
- 267 C.F Wells and D. Mays, J. Chem. Soc. A. (1968) 665.
- 268 G Davies, LJ Kirschenbaum and K Kustin, Inorg Chem., 7 (1968) 146
- 269 CF Wells and D Mays, J Chem. Soc. A (1968) 1622
- 270 G Davies, L.J. Kuschenbaum and K. Kustin, Inorg. Chem. 8 (1969) 663
- 271 G Davies and K. Kustin, Inorg Chem, 8 (1969) 484
- 272 G Davies and K Kustin, Inorg Chem., 8 (1969) 1196
- 273 E i Heiba, R M Dessau and W J Koehl, Jr , J Amer Chem Soc , 91 (1969) 138
- 274 G Brauer, Handbook of Preparative Inorganic Chemistry, Vol. 2, Academic Press, New York, 1963, p. 186.
- 275 R Van Helden and E C Kodyman, Rec Trav Chim. 80 (1961) 57
- 276 P.J. Andrulis, M.J.S. Dewar, R. Deitz and R.L. Hunt, J. Amer. Chem. Soc. 88 (1966) 5473
- 277 C Furlani and A Clani, Ann Chim (Rome), 48 (1958) 286
- 278 O Holmes and D S McClure, J Chem Phys., 26 (1957) 1686
- 279 EI Heiba, R.M. Dessau and W.J. Koehl, Jr., J. Amer. Chem. Soc., 90 (1968) 5905
- 280 J B Bush, Jr and H Finkbeimer, J Amer Chem. Soc. 90 (1968) 5903
- 281 A D Liehr, Prog Inorg Chem., 3 (1962) 281
- 282 JP Fakeler and ID Chawla, Inorg Chem, 3 (1964) 1130
- 283 RJH Clark, J Chem Soc , (1964) 417
- 284 JP Fackler, TS Davis and ID Chawla, Inorg Chem., 4 (1965) 130
- 285 W E Hatfield and W E Parker, Inorg Nucl Chem Letters, 1 (1965) 7
- 286 R Dingle, Acta Chem Scand, 20 (1966) 33
- 287 C K Jorgensen, Acta Chem Scand , 16 (1962) 2406
- 288 R Dingle, J Mol Spectry , 9 (1962) 426
- 289 TS Davis, Ph D Thesis Case Inst of Techn, 1967
- 290 D Oclkrug, Angew Chem Intern Ed Engl., 5 (1966) 744
- 291 DR Sears, Ph D Thesis Cornell Univ , 1958
- 292 I D Chawla and M J Frank, J Inorg Nucl Chem., 32 (1970) 555
- 293 R Samuel and A R R Desparde, Z Phys., 80 (1933) 395
- 294 JJ Alexander and HB Gray, J Amer Chem Soc., 90 (1968) 4260